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Abstract. This is a review of over 400 published research papers on free-living, non-testate amoebae during the approximate last half cen-
tury (1965–2017) particularly focusing on three topics: Biogeography, Ecology, and Physiology. These topics were identified because of 
the substantial attention given to them during the course of the last half century, and due to their potential importance in issues of local and 
global expanse, such as: aquatic and terrestrial stability of habitats, ecosystem processes, biogeochemistry and climate change, and the role 
of eukaryotic microbes generally in ecosystem services. Moreover, there are close epistemological and thematic ties among the three topics, 
making a synthesis of the published research more systematic and productive. The number of reviewed publications for each of the three 
individual topics is presented to illustrate the trends in publication frequencies during the historical period of analysis. Overall, the number 
of total publications reviewed varied somewhat between 1965 and early 2000 (generally less than 10 per year), but increased to well over 
10 per year after 2000. The number of Biogeography and Ecology studies identified in the online citations increased substantially after the 
mid 1990s, while studies focusing on Physiology were relatively more abundant in the first decade (1965–1974) and less were identified in 
the 1985 to 2004 period. Citations to the literature are listed in tables for each of the three topics for convenience in retrieving references to 
specific aspects, and representative examples of the cited research in the tables are reviewed in the text under subheads dedicated to each 
of the three topics. Biogeographic studies largely focused on the geographic distribution and localized patterns of occurrence of amoebae, 
with more recent studies incorporating more attention to likely correlates with environmental and biotic factors in the distribution and com-
munity composition of amoebae. Ecological studies reviewed in the later decades tended to focus more on community dynamics, the effects 
of environmental variables on communities (including climate-related topics), a trend toward more physiological ecology studies, combined 
field-based and experimental studies, and incorporation of newer methodologies such as molecular genetics. In general, physiology stud-
ies in the first decades of the review tended to focus on topics of cell physiology such as basic biochemistry, enzyme assays, mechanisms 
of cell division and development, encystment, and motility. Later studies examined broader topics such as osmoregulation, nutrition, fine 
structure evidence of cellular changes during the life cycle (including encystment and excystment), and issues related to asexual and sexual 
reproduction, with increasing substantial evidence of evolutionary patterns and phylogenetics based on molecular evidence. A final section 
on Conclusions and Recommendations summarizes the findings and presents some potentially productive approaches to future research 
studies on Amoebozoa within the three designated topics of analysis.
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INTRODUCTION

This is a review of representative research on non-
testate (naked) amoebae published during the recent 
half century (1965–2017), particularly focusing on three 
topics: 1) Biogeography, 2) Ecology, and 3) Physiology. 
Hereafter, I will use the term “amoeba” to mean naked, 
free-living amoebae, largely members of the Amoebo-
zoa (previously “Gymnamoebia”), especially members 
of the lobose and filose groups, including (where ap-
propriate) examples of the amoeboid stages of Heter-
olobosea and Myxomycete taxa when they particularly 
illustrate some of the breadth of research within each 
of the three designated topics. These three topics are 
chosen because they represent an interesting example 
of how amoeba research has developed over the recent 
approximate half century particularly in fields related to 
biogeography and physiological ecology. 

This is an extensive, but not exhaustive, historically-
based review intended to summarize some of the ac-
complishments in amoeba research within the three 
topics of Biogeography, Ecology and Physiology, with 
the aim of establishing a better documentation of the 
development of the field in the last half century, and 
more particularly suggesting some future directions 
that may be productive, especially if newer researchers 
in the field are seeking potential research topics to initi-
ate or sustain their scholarly productivity. Also, amoe-
bae have been studied less intensely than other eukary-
otic microbes, and the increasing research, especially 
in ecology, is encouraging. Hopefully, this review may 
serve as a context for more intensive field-based and 
experimental research on amoebae. This is fundamen-
tally a review, not a major, exhaustive summary of all 
published research on amoebae during the recent half- 
century. As such, I have had to make some judgments 
about what to include as “representative” of the publi-
cations during each decadal time period. However, as 
much as possible, I have tried to be representative in 
selecting examples of the total publications that were 
retrieved by an online search for each year, especially 
selecting examples that capture the broader range of 
the topics that were published. Therefore, the report  
of the number of published reports reviewed for each 
year (Fig. 1B–D) are only indicative of the trends in 

total publications, and should not be considered as 
a statistically-based assessment of the entire publica-
tions occurring each year.

The recent substantial research with amoebae (as 
with many protists), has deep historical origins extend-
ing back to at least the early nineteenth century, and 
before (e.g. Pritchard 1834). It is interesting to note 
that some of the research questions and themes that we 
continue to pursue in recent times have been of long-
standing historical interest including such phenomena 
as locomotion, sensitivity to light and other stimuli, 
bacterial symbioses and feeding, etc. (e.g. Dellinger 
1906; Leidy 1875, 1878; Mast 1910, 1926; Metcalf 
1910). This is in addition to the substantial discoveries 
of classical morphologists and taxonomists (e.g. Rösel 
von Rosenhof, Leidy, Schaeffer, Schaudinn), extend-
ing into modern times (e.g. Bovee, Grell, Kudo, Page, 
Pussard, Sawyer, and others) that established a founda-
tion for the modern advances in molecular phylogenet-
ics of the field (e.g. Cavalier-Smith et al. 2015, Lahr 
et al. 2011, Pawlowski and Burki 2009, Smirnov et al. 
2011, Tekle et al. 2008). 

In preparing this review of amoeba research on the 
three stated topics during approximately fifty years, 
I chose to begin with the date of 1965, because it was 
a useful mid-decade starting point, and also provided 
a good reference point for the substantial research that 
emerged in the latter half of the twentieth century. In 
addition to the research contributions of many dedi-
cated protistologists, we also have benefitted from the 
research on amoebae pursued by cellular physiologists 
(cum-protozoologists) who recognized that cultured 
amoeboid protists were good model systems for eu-
karyotic amoeboid cells in general, including the wan-
dering cells of the mammalian cellular immune system 
and metastatic malignant cells, among other exemplars 
as cited in the section on Physiology of this review. 
Consequently, substantial research on the fundamen-
tal biochemistry and cellular physiology of cultured 
amoebae emerged during the latter half of the twentieth 
century, especially after axenic cultures of a few model 
amoebae were established, and before widely available 
axenic cultures of mammalian cells were developed. 
Some of these studies are included in this review in the 
section on Physiology.

Fig. 1A–D. Column graphs showing the number of published papers reviewed (ordinate) grouped by decades (abscissa). 1A – Total;  
1B – Biogeography; 1C – Ecology; 1D – Physiology.
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During a search of the literature using academic 
sources (e.g. Google Scholar, Biosis), I chose particu-
larly the following key words: amoeba or amoebae, 
gymnamoebae, naked amoebae, and free-living amoe-
bae. When information in identified sources also sug-
gested using other search terms, these were included 
in additional searches to ensure that a reasonably good 
representation of research was covered during the des-
ignated historical period. The online search was further 
refined by examining each publication title and abstract 
to select citations most relevant to the three topics used 
in this review. If online versions of the published pa-
pers were not available, then only the abstract was used. 
However, for most cited items, it was possible to down-
load a copy of the publication. Based on the title of an 
article, and an examination of the abstract and portions 
of the text, each collected item was assigned to one of 
the three review topics (Biogeochemisty, Ecology or 
Physiology) as plotted in column graphs (Figs. 1B–D). 
Publications that pertained to topics in biogeography or 
ecology were among those most challenging to catego-
rize exclusively in only one of those two topics. How-
ever, as a guideline, those publications that included 
the word “biogeography” in the title were specifically 
placed in the category of Biogeography, when the con-
tent was clearly appropriate. Some other publications 
reporting new amoeba spp. collected from a particu-
lar geographic locale were generally placed within the 
topic of “Biogeography” to broaden the representative 
biogeographical publications covered in this review. 
Other research reports that dealt with clearly ecologi-
cal research (autecology or synecology) going beyond 
sampling locale, to include broader ecosystems and 
community level studies, were grouped in the “Ecol-
ogy” category. The Physiology category included re-
search on biochemistry, cellular physiology, behavior, 
nutrition, etc. that clearly related to the basic science of 
amoeba cells, where less research attention was given 
to community or ecosystems level aspects. 

All of the published citations reviewed have been 
listed in Summary Tables (Tables 1–6) within subcate-
gories relevant to each topic to make the citations easily 
identified and their identification in the Reference sec-
tion of this paper more accessible. There are two Sum-
mary Tables for each of the three major topics (hence 
six all-totaled), each one representing a major subtopic 
(e.g. Aquatic environments in one table, and Terrestrial 
environments in the other table). For example, cita-
tions for recovered articles on Biogeography appear in 
Summary Tables 1 and 2. Table 1 contains citations for 

aquatic environments, and Table 2 for terrestrial envi-
ronments. This was done to make each table more con-
cise and readable, and also to make the listed citations 
to the references more easily identifiable. Because some 
recovered publications placed in Biogeography could 
also be useful in environmental and related research, 
the Biogeography entries (Tables 1 and 2) are further 
categorized in subcategories that may have environ-
mental or ecological relevance (e.g. marine or fresh-
water locales, rivers and streams, soda lakes, terrestrial 
locales, grasslands, etc.). A few citations that appeared 
to be pertinent to two subcategories in the tables were 
listed in both table subcategories as a convenience to 
the reader who would prefer access to citations of inter-
est across the categories.

No a-priori set of subcategories in each table was es-
tablished in designing the Summary Tables; rather emer-
gent subcategories were identified based on a review of 
the major foci of the papers within each of the broader 
three designated topic areas: Biogeography, Ecology, 
and Physiology. This is not intended to be a formal 
content analysis of the literature, but rather a review of 
some of the major themes that were pursued in research 
with amoebae over the previous half-century.

The next section, following this Introduction, pre-
sents a brief synopsis of the number of publications col-
lected in total, and in addition for each of the three topic 
categories. After the synopsis section, there are three 
major sections, each representing a review of research 
corresponding to one of the three major topics (Bioge-
ography, Ecology, and Physiology). The final section in 
this review is Conclusions and Recommendations. 

Not all entries listed in the subsections of a respec-
tive Summary Table are reviewed in the text related 
to that section. Only some illustrative examples of 
the cited research are chosen from among the entries 
in each subsection of the Summary Tables to provide 
a perspective on the research. However, each Summary 
Table contains all citations listed in the Reference sec-
tion that pertain to the subcategories in that Summary 
Table. Hopefully, the subcategorizations with their cita-
tions in each Table will enable the reader to find cita-
tions listed in the References that relate to a particular 
topic of interest.

Given the large number of references recovered in 
this review, the Reference section is subdivided into 
subsections, each corresponding to the major sections 
of the text (Introduction, Biogeography, Ecology and 
Physiology, including subdivisions corresponding to 
the titles of the pair of Tables for each of the three top-
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ics). This is intended to make locating references cited 
in each of the sections (including those in the Tables) 
more convenient.

Additional information on various aspects of the 
biology of free-living amoebae (beyond this more de-
tailed, historical perspective) can be found in Anderson 
(2017), Bradley and Marciano-Cabral (1996), Hauer 
and Rogerson (2005), Lei et al. (2014), and Rodriguez-
Zaragoza (1994). There are also studies of opportun-
istic free-living amoebae that are medically important 
pathogens or parasites in addition to the important roles 
of amoebae in the natural environment. Some recent 
reviews of opportunistic amoebae include the follow-
ing: Król-Turminska and Olender (2017), Schuster and 
Visvesvara (2004), Visvesvara (2010).

Some articles on relevant and emerging methods in 
biogeographic and ecology research include: Geisen 
and Bonkowski (2017), Beare et al. (1995), Behets et 
al. (2006), Douglas-Helders (2002), Fiore-Donno et al. 
(2016), Geisen et al. (2015), Kuiper et al. (2006), Riv-
iére et al. (2006).

NUMERICAL SYNOPSIS OF RECOVERED 
PUBLICATIONS

The total number of recovered publications from 
the online search (1965–2017) was 431. The number 
recovered for each of the three topic categories was 
as follows: Biogeography (111), Ecology (171), and 
Physiology (149). The frequencies of recovered entries 
for each year, grouped by decades, are plotted as a bar 
graph, including total entries recovered (Fig. 1A), and 
for each of the topic categories: Biogeography (Fig. 
1B), Ecology (Fig. 1C), and Physiology (Fig. 1D). 
With respect to the total entries recovered (Fig. 1A), 
there was a variable (but relatively low number < 10 
per year) preceding the mid 1990s. However, during the 
first half of the 1965–1974 decade there was an upward 
trend with a peak at 18 entries in the year 1969, largely 
driven by a sharp increase in entries for Physiology 
(Fig. 1D). A further long-term upward trend occurred 
after 1995 reaching a peak of 21 in the year 2016, large-
ly driven by a peak of 12 citations in the category of 
Ecology (Fig. 1C). Recovered entries for Biogeography 
were sparse prior to 1995 (with a mean of 1.5 per year) 
except for 1993 (peak of 6), with a mean of 1.5 per 
year; but the number increased substantially after 1995, 
with a mean of 3.5; and a peak of 8 in 2001. Recovered 

entries for Ecology were variable, but more consistent 
in number (at four or less entries per year up to 1994), 
but showed a marked increase beginning about 2000, 
and rising to a peak value of 12 in 2016. By contrast, 
recovered entries for Physiology were most numerous 
in the period of 1965 to ~ 1985 (mean = 4.6 per year), 
with a slump after 1985 (with a few small peaks) un-
til ~ 2010 when a comparable number per year as in 
1965–1985 occurred (mean ~ 4.0). 

BIOGEOGRAPHY

Recovered entries for Biogeography include two 
main subcategories Aquatic environments (Table 1) 
and Terrestrial environments (Table 2). Publications 
reviewed addressed polar, temperate and tropical bio-
geographic locales for both of these two ecosystem 
subcategories, with a much larger proportion devoted 
to temperate geographic locations. Overall, 14 entries 
addressed aquatic and terrestrial polar studies. Among 
these, Tyml et al. (2016) reported evidence of a new 
species of Vermistella from the Arctic, a genus previ-
ously collected only from the Antarctic (Moran et al. 
2007); thus, this genus is at least bipolar. 

Polar research. Three studies concerned amoebae 
from polar ice and melt water. Caron et al. (2017) re-
ported the presence of naked amoebae grazing in sea 
ice habitats (a topic related to ecology as well), while 
Dillon et al. (1968) and Hada (1967) reported amoeba 
composition in Antarctic meltwater (and other locales). 
These include Antarctic isolates of Amoeba alveolata 
and Trichamoeba clava found by Hada (1967). Dillon et 
al. (1968) discovered a variety of non-testate amoeba in 
three families from locations on Ross Island. Shatlovich 
et al. (2009) and Shmakova et al. (2015) working in the 
Arctic recovered cysts of viable amoebae from perma-
frost with paleohistorical origins in the Late Pleistocene 
and Holocene. Although it is most likely that the frozen 
amoebae were encysted, recent evidence from temper-
ate winter terrestrial samples indicates some nontestate 
amoebae can persist as non-encysted freeze-resistant 
stages in frozen soil (e.g. Anderson 2016, Bischoff and 
Connington, 2016; citations in Table 4: Terrestrial ecol-
ogy, Temperate subsection). However, their survival 
rates while in a dormant state have not been determined 
beyond weeks to months.

Temperate research. Temperate aquatic studies ad-
dressed a broad range of topics encompassing reports 
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Table 1. Biogeography: Aquatic environments

Categories Citations

Polar

Marine Mayes et al. (1998), Moran et al. (2007), Tong et al. (1997), Tyml et al. (2016)

Ice & melt water Caron et al. (2017), Dillon et al. (1968), Hada (1967)

Temperate

Aquatic general Baumgartner et al. (2003), Niyyati & Latifi (2017), Page (1971), Revill et al. (1967), Solgi et al. (2012)

Estuaries Ettinger et al. (2003), Fernandez-Leborans et al. (2001), Juhl & Anderson (2014), Kiss et al. (2009), Muylaert et al. (2000)

Rivers & streams Bovee (1965), Patcyuk & Dovgal (2012), Patsyuk (2014), Sleigh et al. (1992)

Fresh water systems Bell & Weithoff (2008), Lara et al. (2011), Smirnov & Goodkov (1996, 2004)

Coastal Douglas-Helders et al. (2003), Fernandez-Leborans et al. (1999), Lighthart (1969), Munson (1992), Rogerson & Laybourn-
Parry (1992), Sawyer (1971, 1990)

Marine algal surfaces Armstrong et al. (2000), Rogerson (1991)

Open marine water Davis et al. (1978), Murzov & Caron (1996), Vørs (1992)

Saline lakes Davidson & Davidson (2005), Hauer et al. (2001), Rogerson & Hauer (2002),

Sediments Burnett (1977), Butler & Rogerson (2000), Decamp et al. (1999), Kudryavtsev & Pawlowski (2013), Sawyer et al. (1992), 
Smirnov (2007), Smirnov & Thar (2003, 2004)

Tropical

Lakes and lagoons Amin et al. (2008), Bagatini et al. (2013), Finlay et al. (1987), Garstecki & Arndt (2000), Lugo et al. (1998)

Mangroves Bhattacharya et al. (1987), Rogerson & Gwaltney (2000)

Table 2. Biogeography: Terrestrial environments

Categories Citations

Polar

Antarctic Brown et al. (1982), Smith (1982, 1996), Wilkinson & Smith (2006)

Arctic Shatilovich et al. (2009), Shmakova & Rivkina (2015), Tyml et al. (2016)

Temperate

General & comparative Bamforth (1984, 2004), Bischoff & Anderson (1998), Li et al. (2010), Ning & Shen (1998), Page (1976), Stephenson et al. 
(1993)

Grasslands or grassy sites Anderson (2000), Bass & Bischoff (2001), Brown & Smirnov (2004), Geisen et al. (2014), Griffiths (2002), Rivera et al. 
(1992), Rogerson & Detwiler (1999)

Cave sediments Garcia-Sanchez et al. (2013), Gittleson & Ferguson (1971), Walochnik & Mulec (2009)

Forests & woodlands Feest & Madelin (1988), Mrva (2005), Old & Oros (1980), Timonen et al. (2004)

Tropical

Arid land & deserts Dumack et al. (2016), de Jonckheere et al. (2011), Mayzlish-Gati & Steinberger (2007), Rodriguez-Zaragoza & Garcia 
(1997), Rodriguez-Zaragoza et al. (2005)

Forests & wetlands Amaral-Zettler et al. (2006), Bamforth (1976, 2007), Seneviratna & Waidyasekera (1995)

of amoeba assemblages from widely different ecosys-
tems including freshwater (e.g. Bovee 1965, Bell and 
Weithoff 2008); coastal and estuarine (e.g. Douglas-
Helders et al. 2003, Kiss et al. 2009, Rogerson and 
Laybourn-Parry 1991); and deep-sea sediments (e.g. 
Decamp et al.1999, Sawyer et al. 1992, Smirnov 2007). 

Fewer reports were recovered for tropical locales, and 
were largely from lakes, lagoons, and mangroves (e.g. 
Amin et al. 2008, Finlay et al. 1987, Bhattacharya et 
al. 1987). 

Temperate terrestrial studies, some with ecological 
relevance, were done at grasslands and grassy sites. 
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Among other aspects these studies included the abun-
dance, diversity and geographic distribution of amoe-
bae (e.g. Brown and Smirnov 2004, Geisen et al. 2014, 
Griffiths 2002). Other temperate studies examined cave 
sediments (e.g. Gittleson and Ferguson 1971, Garcia-
Sanchez et al. 2013), and soil in forests and woodlands 
(Feest and Madelin 1988, Old and Oros 1980). Addi-
tional temperate studies were of broader scope includ-
ing desert locales and woodlands (e.g. Bamforth 1984, 
2004), and comparative studies across broad geograph-
ic regions, e.g. Page (1976) who studied assemblages of 
amoebae in Britain and the U.S.A. 

Tropical research. Tropical studies are grouped 
in two categories: Arid land and deserts (e.g. de Jon-
ckheere et al. 2011, Dumack et al. 2016, Rodriguez-
Zaragoza and Garcia 1997); and forests, woodlands, 
and wetlands. For example, Amaral-Zettler et al. (2006) 
reported recovery of an amoeba from tropical forest 
leaves; and Seneviratna and Waidyasekera (1995) re-
ported the distribution of protists, including eight spe-
cies of amoebae, in Sri Lankan wetlands.

ECOLOGY

Given the relatively large number of recovered pub-
lished items, this category is subdivided into two large 
Divisions: Aquatic ecology (Table 3), and Terrestrial 
ecology (Table 4). There are some subcategories includ-
ed in both of these tables, namely 1) biogeochemistry, 
2) community interactions and dynamics, 3) trophody-
namics and trophic interactions, and 4) various interac-
tions of biota and the abiotic environment. Other sub-
categories, more specific to each of these divisions, are 
also included as shown in Tables 3 and 4.

Aquatic ecology

The aquatic ecology division is further subdivided 
into Freshwater and Marine sections (Table 3), with 
some subdivisions that are included in both of these 
subdivisions. Therefore, the citations reviewed here are 
addressed using topics from subsections that are pre-
sent in both major divisions (Freshwater and Marine). 
However, the kind of water mass (freshwater or marine) 
is cited in the text to clarify which one is being refer-
enced, beginning with Biofilms.

Biofilms in freshwater and marine environments. 
Biofilms are of increasing interest as hotspots of bio-
logical activity, and also as possible health hazards, be-
cause they can support a safe haven for pathogenic or-

ganisms, some of which are grazed on, or harbored, by 
amoebae. Biofilm research papers were found for both 
freshwater and marine environments. For example, 
Huws et al. (2005) examined the impact of protist graz-
ing (including Acanthamoeba castellanii) on the popu-
lation dynamics of freshwater bacteria in multispecies 
biofilm communities. A. castellannii has the capacity 
to graze on mixed biofilm communities and becomes 
integrally associated with them, whereas a ciliate was 
more destructive and reduced biofilm thickness by up 
to 60%. Parry (2004) published a substantial review of 
protozoan grazing of freshwater biofilms, with a specif-
ic section on amoebae. Anderson (2013) used Plexiglas 
plates as substrates in a northeastern U.S.A. freshwater 
pond, and reported data on amoeba densities, sizes, di-
versity and estimated C-biomass. Thirty morphospecies 
were identified, with large amoebae (≥ 50 µm) account-
ing for the greatest proportion of the C-biomass. More-
over, Johnson and Sieburth (1976) examined slime 
biofilms, obtained from a salmon marine hatchery, and 
reported that naked and scale-bearing amoebae, among 
other protists, formed a complex community with ni-
trifying-like bacteria. Smirnov (2001a, b) documented 
the diversity of amoebae in marine cyanobacterial mats 
grown in the laboratory after four years, and also isolat-
ed a relatively large new species (Vannella ebro) from 
cyanobacterial mats in Spain. He reported some of the 
physical environmental features tolerated by the new 
species.

Biogeochemisty. Biogeochemical studies were 
found largely in more recent publications, including 
a substantial review of the role of protozoa in aquatic 
nutrient cycles (Caron 1991), particularly with respect 
to ocean ecosystems. He also presented information on 
the role of amoebae and other protists in remineraliza-
tion during surface dwelling on ocean aggregates. His 
research, and that of others, point out that our knowledge 
of the role of amoebae in ocean nutrient cycling is almost 
nil. Anderson (1997, 2007, 2016) has addressed the role 
of protists, including amoebae, in freshwater and marine  
C-cycles, including implications for global warming.

Community interactions including symbioses. 
Community interactions include a diverse array of 
studies in freshwater and marine environments, with 
a proportionally larger number of recovered studies for 
freshwater systems. For example, the presence of endo-
symbionts (particularly bacteria) in amoebae has been 
reported in studies ranging from the 1960s (Jeon and 
Lorch 1967) to recent reports in early twenty-first cen-
tury. Dirren et al. (2014) reported the presence of ecto- 
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Table 3. Ecology: Aquatic environments

Categories Citations

Freshwater ecosystems

Biofilms Anderson (2013), Huws et al. (2005), Parry (2004), Zubkov & Sleigh (1999)

Biogeochemical Anderson (1997, 2007)

Community interactions

Endosymbiosis Dirren et al. (2014), Jeon & Lorch (1967), Jeon & Jeon (1976), Wang & Wu (2014), Yagita et al. (1995)

Structure & dynamics Baldock et al. (1983), Bischoff & Horvath (2011), Bischoff & Wetmore (2009), Holt et al. (2002), Kusch (1993), Rami-
rez et al. (2010)

Plankton ecology Ahmad (2009), Arndt (1993), Butler et al. (2000), Kiss et al. (2009), Urrutia-Cordero et al. (2013), Van Wichelen et al. 
(2016), Yamamoto (1981)

Environment seasonal Khwon & Park (2017), Magnet et al. (2013), Mrva (2006), Xu et al. (2005)

Trophic interactions

Algal predation Canter (1973), Canter & Lund (1968), Smirnov et al. (2011)

Bacterial predation de Moraes & Alkfieri (2008), Lawler & Morin (1993), Lesen et al. (2010)

Cyanobacterial predation Ma et al. (2016), Van Wichelen et al. (2010), Wright et al. (1981), Xinyao et al. (2006)

Varied predation Finlay et al. (1988), Kostomarova-Nikitina (1967), Salt (1968)

Water column processes Anderson (2005), Anderson (2011), Oshima et al. (1986), Wörner et al. (2000)

Marine ecosystems

Biofilms Johnson & Sieburth (1976), Smirnov (1999, 2001a, b)

Biogeochemical Caron (1991), Anderson (2016)

Community & abiotic 
interactions

Butler & Rogerson (1996), Davidson & Davidson (2005), Dyková et al. (2008), Mbugua (2008), Moss et al. (2001), 
Peglar et al. (2004)

Endosymbioses Anderson (1977), Schulz et al. (2015)

Plankton ecology Artolozaga et al. (1997), Caron et al. (1982), Mayes et al. (1998), Rogerson et al. (2003)

Salinity studies Cowie & Hannah (2006), Hauer & Rogerson (2005), Lugo et al. (1998), Sawyer (2011)

Spatial & temporal variables Anderson & Rogerson (1995), Butler & Rogerson (1995), Cowie & Hannah (2007), Fenchel (2010), Sawyer (1980)

Trophic interactions Anderson (1994), Grell (1994), Laybourn-Parry et al. (1987), Polne-Fuller (1987), Rogerson & Hannah (1996), Roger-
son et al. (1998) 

and endosymbiotic bacteria associated with the amoeba 
Nuclearia sp. from lake Zurich. The ectosymbionts 
(several thousand cells) were regularly arranged inside 
a layer of extracellular polymeric substances produced 
by the amoeba on its surface; and endosymbionts (Gam-
maproteobacteria), with as many as 15–20 bacteria per 
amoeba, were enclosed in symbiosomes inside the host 
cytoplasm. The use of molecular genetic techniques has 
also provided new insights into amoeba-symbiont asso-
ciations in freshwater (Wang and Wu 2014) and marine 
environments (e.g. Schulz et al. 2015). Transmission 
electron microscopy has provided new information on 
structural relationships of amoeba hosts and bacterial 
endosymbionts, for example non-membrane enclosed 
bacterial endobionts were reported in an Acanthamoeba 
sp. from the Philippines (Yagita et al. 1995). Similarly, 

non-membrane enclosed bacteroids were also observed 
in electron microscopic sections of a marine mayorellid 
amoeba associated with blue-green algae (Trichodes-
mium tufts) in the Sargasso Sea (Anderson 1977).

Further community-based ecology studies have fo-
cused on interactions of amoebae with a wide variety of 
other biota, including chalk stream macrophytes (Bal-
dock et al. 1985), zebra mussels in freshwater lakes 
(Bischoff et al. 2009), floating water hyacinth plants 
(Ramirez et al. 2010), marine ctenophores (Mbugua 
2008, Moss et al. 2001), and interactions with inver-
tebrates in the hypersaline Mono Lake (Davidson and 
Davidson 2005). Holt et al. (2002) studied the impor-
tance of biotic interactions in abundance-occupancy 
relationships, using Amoeba proteus, among other 
protists, to test experimentally whether interspecific in-
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teractions and dispersal influence the formation of the 
abundance–occupancy relationship in metapopulation 
systems in laboratory freshwater microcosms contain-
ing protists and bacteria. Abundance–occupancy re-
lationships come about from the commonly observed 
pattern that abundance and distribution of species tend 
to be related, such that species declining in abundance 
often may also experience declines in the number of 
sites they occupy, while species increasing in abun-
dance tend also to be increasing in occupancy. Holt et 
al. concluded that abundance–occupancy relationships 
in interacting communities were better defined than 
those in non-interacting communities.

Plankton ecology. Given the importance of plank-
ton in the water column, the topic of plankton ecol-
ogy is well represented among recovered publications 

on amoebae, including freshwater studies in Antarctic 
lakes (Butler et al. 2000), and associations with cyano-
bacteria in other freshwater environments (e.g. Urrutia-
Cordero 2013, Van Wichelen et al. 2016, Yamamoto 
1981). Marine studies particularly are represented by 
the role of amoebae on suspended floc and marine snow 
in coastal locations, estuaries and open ocean (e.g. An-
derson 2011, Artolozaga et al. 1997, Caron et al. 1982, 
Rogerson et al. 2003) emphasizing taxonomic compo-
sition, succession over time, and abundance on floc rel-
ative to surrounding water column. Mayes et al. (1998) 
presented one of the first studies to detail abundances of 
bacterivorous amoebae in East Antarctic coastal waters. 
They found, overall, numbers in the water column were 
highly variable (below detection to 2000 amoebae L–1) 
and the data showed no clear seasonal trends.

Table 4. Ecology: Terrestrial environments

Categories Citations

Fundamental studies

Biogeochemistry Anderson (2008, 2012, 2014), Anderson & Griffin (2001), Anderson et al. (2017), Clarholm (1981), Coleman et al. (1977), 
Elliott et al. (1979, 1980), Gabilondo et al. (2015), Gould et al. (1979), Persson et al. (1980), Rønn et al. (2002), Zahn et al. 
(2016)

Community dynamics

Plant interactions Bonkowski (2004), Ekelund et al. (2009), Koller (2008), Krome et al. (2009), Laird (1966)

Microbe interactions Bamforth (1988), Barrett (1977), Finlay et al. (2000), Jousset (2012), Neidig et al. (2010), Okafor (1966)

Endosymbionts Denet et al. (2017), Greub et al. (2003), Horn & Wagner (2004)

Environmental variables Andersen & Winding (2004), Anderson et al. (2001), Band (1995), Bryant et al. (1982), Cervero-Aragó et al. (2013), Cor-
tés-Pérez et al. (2014), Darbyshire (2005), Ekelund et al. (2003), Grün et al. (2017), Stout (1984)  

Trophodynamics

Amoeba predation Anderson & Patrick (1978), Danso et al. (1975), Murase & Frenzel (2008), Old & Darbyshire (1978)

Amoeba predators Anderson et al. (1977–1978), Bonkowski & Schaefer (1997), Dreschler (1969), Elliott et al. (1980), Michel et al. (2014)

Worldwide ecosystems

Alpine & polar Anderson (2010), Anderson & McGuire (2013), Lin et al. (2017), Shatilovich (2009)

Desert Darby (2008), Parker et al. (1984a, b), Rodriguez-Zaragoza et al. (2005, 2007) 

Temperate

Climate and seasons Anderson (2004, 2016), Bischoff (2002), Rogerson (1982), Stout (1984)

Plant interactions Amewowor & Madelin (1991), Bischoff & Connington (2016), Darbyshire & Greaves (1967), Darbyshire et al. (1977), 
Georgieva et al. (2005), Koller et al. (2013), Orosz et al. (2013), Weidner et al. (2017)

Soil biota interactions Soil 
environment

Dupont et al. (2016), Mrva (2005), Mulec et al. (2016), Qi et al. (2011), Weekers (1995)

Physical variables Anderson (2002), Bryant et al. (1982), Geisen et al. (2014), Takenouchi et al. (2016), Vargas & Hattori (1990)

Chemical variables Schnürer et al. (1985), Stapleton et al. (2005), Zhang et al. (2012)

Trophodynamics Andriuzzi et al. (2016), Chakroborty et al. (1985), Geisen et al. (2016), Jahnke et al. (2007) Monroy et al. (2008)

Tropical Liao et al. (2009), Seneviratna & Waidyasekera (1995)
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Trophic relationships. Given the emphasis on rela-
tions with cyanobacteria reported in community stud-
ies, it is not surprising that trophic relationships in-
cluded feeding on cyanobacteria in freshwater systems 
(Ma et al. 2016, Van Wichelen et al. 2010, Wright et 
al. 1981, Xinyao 2006) and marine environments (e.g. 
Laybourn-Parry et al. 1987). Predation has been report-
ed on freshwater phytoplankton including centric dia-
toms (e.g. Canter 1973), and various algae (e.g. Canter 
and Lund 1968, Smirnov et al. 2011), including ma-
rine algae (Grell 1994, Polne-Fuller 1987, Rogerson et 
al. 1998), and other marine heterotrophic protists (e.g. 
Anderson 1994). In addition, as is more typical, het-
erotrophic bacterial predation was reported in aquatic 
ecosystems, including freshwater (e.g. de Moraes and 
Alfieri 2008, Lawler and Morin 1993) or in estuarine 
and marine environments (Lesen et al. 2010, Rogerson 
and Hannah 1996). Finlay et al. (1988) reported varied 
predation on cyanobacteria, bacteria and flagellates by 
ciliates in an African soda lake (Lake Nakuru). Kos-
tomarova-Nikitina (1967) reported that the freshwater 
Amoeba verrucosa consumes nematode (Ascaris) eggs.

Water column interactions. A variety of more gen-
eral water column interactions including interactions 
with other biota, seasonal and environmental interac-
tions, and effects of chemical and physical variables 
have been reported. For example, some authors (e.g. 
Khwon and Park 2017, Magnet et al. 2013, Mrva 2006, 
Xu et al. 2005) reported environmental changes of 
amoebae and other protists in freshwater environments. 
Similar studies on changes in space and time in marine 
ecosystems were reported by Anderson and Rogerson 
(1995), Butler and Rogerson (1995), Cowie and Han-
nah (2007), Fenchel (2010), and Sawyer (1980).

Terrestrial ecology

Reviews of terrestrial ecology studies (Table 4) 
are reported in two major subcategories: “Fundamen-
tal studies,” not particularly related to any geographic 
place, and “World-wide studies” that are situated in 
various geographic locales. The Fundamental studies, 
therefore, are further subcatergorized based on research 
focus (Biogeochemistry, Community dynamics, Envi-
ronmental variables, and Trophodynamics). The World-
wide ecosystem subcategory contains reviews further 
subcategorized based on ecosystems (e.g. Alpine and 
polar, Desert, Temperate, and Tropical).

Fundamental studies. Biogeochemical studies in 
soils particularly addressed nutrient remineralization, 
nutrient cycles, and the role of amoebae and other pro-

tists in fertility of the soil (e.g. Clarholm 1981, Coleman 
et al. 1977, Elliott et al. 1979, Zahn et al. 2016). With 
evidence of increasing atmospheric CO2 concentrations, 
and its effects on the environment, more recent biogeo-
chemical terrestrial studies focused on the effects of el-
evated CO2 on amoeba associated protist communities 
and plants (e.g. Anderson and Griffin 2001, Gabilondo 
et al. 2015, Rønn et al. 2002). The significant role of 
eukaryotic terrestrial communities (including amoebae 
and other protists) serve in the global C-cycle and its im-
portance for climate change has also attracted research 
interest (e.g. Anderson 2008, 2012, 2014, Anderson et 
al. 2017). Community dynamics relative to plant and 
amoeba interactions, included promoting plant growth 
and the microbial loop (Bonkowski 2004, Ekelund et al. 
2009). An interesting study examined the protist com-
munity (including amoebae) in the aqueous suspension 
in the pitchers of pitcher plants (Laird 1969).

A variety of studies addressed some of the complex 
interactions of microbiota with each other in terrestrial 
environments. Finlay et al. (2000) employed a newer 
method for determining the potential abundance of free-
living protozoa in soil. They reported that in diverse 
types of soil, flagellates were the most abundant, fol-
lowed by naked amoebae, then the testate amoebae and 
ciliates, and noted that this order is inversely related to 
typical organism size in each group. Rogerson (1982) es-
timated the annual production and energy flow of large 
naked amoebae populations inhabiting a Sphagnum 
bog and reported that total consumption accounted for 
361.0 kJ m–2 yr–1, of this 127.1 kJ was assimilated and 
239.9 was egested. Moreover, of the assimilated energy, 
77.4 kJ was respired.

At least 14 of the reviewed papers were concerned 
with interactions of amoebae with plants or specifically 
the plant rhizosphere. Studies examined the commu-
nity structure and microbial interactions in the rhizo-
sphere of plants, including the role of amoebae (e.g. 
Koller 2008, Krome et al. 2009), or in soil that had 
been altered by agriculture or addition of nutrients (e.g. 
Kramer et al. 2016, Schnürrer et al. 1986, Stapleton et 
al. 2005, Zhang et al. 2012), or by effects of pollutants 
such as fuel oil spills (e.g. Anderson et al. 2001, Lara et 
al. 2007, Rogerson et al. 1981).

A number of studies addressed the effects of physi-
cal properties of soil on amoebae and other microbio-
ta in soils, including drought and variability in water 
availability (e.g. Bischoff 2002, Bryant et al. 1982, 
Geisen et al. 2014, Stout 1984), oxygen tensions (e.g. 
Takenouchi 2016); and even possible effects on soil-
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dwelling amoebae by stray, low-frequency, electro-
magnetic fields from communications antennas (Band 
1995). This was part of an environmental monitoring 
survey, and no adverse effects were found.

Studies on trophodynamics examined amoeba pre-
dation in soils including feeding on fungi and methano-
trophs as prey (e.g. Anderson and Patrick 1978, Danso 
et al. 1975, Murase and Frenzel 2008, Old and Dar-
byshire 1978). Likewise, predators on amoebae were 
studied, including nematodes, earthworms, and fungi 
as amoebophagous biota (e.g. Bonkowski and Schaefer 
1997, Dreschler 1969, Elliott et al. 1980, Michel et al. 
2014).

Worldwide ecosystems

As reported in prior major sections, research at 
temperate localities reviewed in this section was more 
substantially reported (30 entries) than for other global 
ecosystems. Among the range of studies in temperate 
regions, effects of climate and seasons were examined 
in protist ecosystems, including the role of amoebae 
(e.g. Anderson 2004, 2016, Bischoff 2002, Rogerson 
1982, Stout 1984). Additional studies were done on 
amoeba and plant interactions within particular temper-
ate locales. These included the role of decomposers in 
litter bags containing plant roots (e.g. Georgieva et al. 
2005), remineralizing affordances of Acanthamoeba in 
the rhizosphere of maize and lucerene plants (Orosz et 
al. 2016), and stimulation of plant beneficial activity 
by pseudomonads in the presence of Acanthamoeba sp. 
(Weidner et al. 2017). Acanthamoeba and other free-
living amoebae were examined in an extreme habitat 
with bat guano (Mulec et al. 2016), while Weekers et 
al. (1995) examined bacteriolytic activity of Acantham-
oeba castellannii, Acanthamoeba polyphaga, and Hart-
mannella vermiformis, a group of free-living amoebae 
commonly found in terrestrial environments. 

Several recovered temperate studies examined soil 
physical factors including soil particle size and granu-
larity (e.g. Anderson 2002, Vargas and Hattori 1990), 
and chemical variables such as soil organic content 
(Schnürer et al. 1985, Zhan et al. 2012). Four reviewed 
publications examined temperate soil trophodynamics, 
such as the widespread occurrence of mycophagous 
amoebae (Geisen et al. 2016), and reduction in soil fun-
gi due to mycophagous amoeba predation (Chakoborty 
et al. 1985). Monroy et al. (2008) documented changes 
in the density of amoebae and other biota in the gut 
of earthworms after ingestion, reporting that the densi-
ties of naked amoebae were substantially greater in the 

gut samples of L. rubellus compared to the densities 
in the surrounding growth medium, suggesting that the 
amoebae were at least adaptable to the earthworm gut 
environment, and the gut-dwelling amoebae, if excret-
ed, may be a reservoir for enrichment of the surround-
ing decomposition communities in the soil. Further 
evidence (Andriuzzi et al. 2016) indicates that the total 
abundance of protists and nematodes is only slightly 
higher in earthworm-occupied drilosphere compared to 
surrounding bulk soil, but strong positive effects were 
found for some protist clades (e.g. Stenamoeba spp.).

Some recovered studies examined the role of amoe-
bae in alpine and polar terrestrial environments, with 
attention to factors such as respiration (Q10), C-biomass, 
and protozoan grazing (e.g. Anderson 2010, Lin et al. 
2017, Parker et al. 1984a, b, Rodriguez-Zaragoza et  
al. 2005, 2007). Desert studies, though fewer, addressed 
interesting topics such as ant nests and types of associat-
ed amoebae (Rodriguez-Zaragoza 2007), effects of rain-
fall and changes in C and N dynamics in litter communi-
ties (Parker et al. 1984a, b), or altered temperature and 
precipitation patterns on soil microbiota, and the role of 
amoebae in soil nutrient availability (Darby 2008). 

Only two tropical site studies were recovered in the 
online survey, one was the study by Seneviratna and 
Waidyasekera (1995) on wetland protists in the Bel-
lanwila wetlands of Sri Lanka, and another by Liao et 
al. (2009) who studied soil sarcodina in Dongzhaigang 
mangroves, China. 

PHYSIOLOGY

As reported in the Introduction, a substantial amount 
of fundamental biochemical and physiological research 
marked the early decades of research during this histor-
ical period, beginning in 1965 through 1985, with a sec-
ond resurgence in activity in 2005–2017. Overall, given 
the large number of entries, the Physiology category is 
subdivided into two parts: 1) Cell biology, nutrition 
and symbioses, and 2) Locomotion, reproduction, life 
cycles and evolution. Table 5 contains citations to the 
first part on cell biology and related topics, and Table 
6 contains citations for the second part on Locomotion 
and related topics.

Cell biology, nutrition and symbioses

There are two subsections for this topic (Table 5): 
1) Cell physiology and 2) Nutrition. The first includes 
biochemical and fundamental cell biological topics, 
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Table 5. Physiology: Cell, nutrition, and symbioses

Categories Citations

Cell physiology

Biochemistry & enzymes Barberá et al. (2010), Chapman-Andresen (1971), Halvey & Finkelstein (1965), Leger et al. (2013), Müller (1969a, b; 
1985), Sopina (2003), Tomlinson (1967)

Cell size & energetics Anderson (2006), Heal (1967), Nachmias (1986), Rogerson (1979, 1981), Rogerson et al. (1994), Wilkins & Thompson 
(1974)

Contractile vacuole & 
osmoregulation

Ahmad & Couillard (1974), Drainville & Gagnon (1973), Geoffrion and Larochelle (1984), Larochelle & Gagnon (1978), 
Lima et al. (2016), Pal (1972), Riddick (1968), Wigg et al. (1967)

Environmental effects Chang (1991), Dolphin (1970), Landau (1965), Patsyuk (2013)

Respiration & anaerobiosis Baldock et al. (1982), Cometa et al. (2011), Crawford et al. (1994), Prescott et al. (1974), Weik & John (1977)

Nutrition

Consumption & growth Adam & Blewett (1967), Bunt (1970), Butler & Rogerson (1997), Mayes et al. (1997), Pickup et al. (2007), Pigon (1970), 
Schuster (1979)

Feeding behavior Cann (1986), Goodall & Thompson (1971), Kühn (1996/97), Old et al. (1985), Page (1977)

Phagocytosis & pinocytosis Avery et al. (1995), Chattergee (1989), Christiansen & Marshall (1965), Hansson et al. (1968), Jeon & Jeon (1976), 
Josefsson (1968), Prusch & Hannafin (1979), Ryter & Bowers (1976), Schuster (1979)

Symbioses Ahn & Jeon (1979), Delafont et al. (2015), Liu et al. (2011), Michel et al. (2010), Schulz et al. (2014), Whatley (1976)

Table 6. Physiology: Locomotion, Reproduction, Life cycle and Evolution

Categories Citations

Locomotion

Adhesion & chemotaxis Brewer & Bell (1969), Grebecki (1982), Jahn et al. (1972), Jeon & Bell (1965), King et al. (1983), Lorch (1969), Klopocka 
& Stockem (1989), Martin (1987), McIntyre & Jenkin (1969), Nohmi & Tawada (1974), Pigon (1972)

Cytoskeleton Allen R. D. (1972), Dembo (1989), Holberton (1969), Jones (1966), Taylor et al. (1973), Tekle & Williams (2017)

Reproduction

Asexual reproduction Feldherr (1968), Maciver (2016), Ord (1969), Rogerson (1980), Ron & Prescott (1969), Schuster (1975)

Sexual reproduction Berney et al. (2015), Lahr et al. (2011), Röpstorf et al. (1993), Tekle et al. (2014, 2017), Tice et al. (2016)

Life cycle & evolution

Encystment & excystment
Biochemistry of encystment

Bowen et al. (1969), Fouque et al. (2012), Griffths & Bowen (1969), Leitsch et al. (2010), Lloyd (2014), Martin & Byers 
(1976), Moon et al. (2012), Park et al. (2002), Pauls & Thompson (1981), Stevens & Pachler (1973), Sykes & Band (1985), 
Weisman et al. (1970)

Cell process Akins et al. (1985), Band & Mohrlok (1969), Foque et al. (2014a), Griffiths & Hughes (1969), Lasman & Shafran (1978), 
Turner et al. (1997)

Cyst structure and control Griffiths (1969), Lasman (1982), Lemgruber et al. (2010), Pasternak et al. (1970), Yang & Villemez (1994)

Excystment Chambers & Thompson (1972), Datta (1979), Foque et al. (2014b), Stratford & Griffiths (1971)

Evolution and life cycles Anderson (2010), Baldock & Berger (1984), Baldock et al. (1980), Cavalier-Smith et al. (2016), Kang et al. (2017), Prze-
lecka & Sobota (1982), Tekle et al. (2008)

such as cell size, energetics, osmoregulation, respira-
tion, and related environmental effects. The second on 
Nutrition, as the title implies, largely focuses on feed-
ing behavior, feeding rates, food engulfment, and pres-
ence of symbionts that in some cases provide resources 
to the amoeba host.

Cell physiology. A substantial number of biochemi-
cal studies characterized the productivity in the early 
period of research in this historical analysis, including 
some major new discoveries such as the hydrogenosome 
(Müller 1985), and role of lysosomal enzymes and per-
oxisomes in cultured protists including amoebae (e.g. 
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Müller 1969a, b). Although evidence of hydrogeno-
somes has been reported in heterolobosean amoebae 
(e.g. Barberá et al. 2010), additional research is war-
ranted to investigate possible evidence of hydrogeno-
somes in Amoebozoa, especially those dwelling in, or 
tolerant of, anaerobic environments, for example as in 
Acanthamoeba spp. (Leger et al. 2013).

Chapman-Andresen (1971) published a substantial 
review article on large amoebae including a section on 
“Some aspects of fine structure related to physiological 
processes;” and another appeared by Schuster (1979) on  
small amoebae and amoeboflagellates, with sections  
on cellular physiology, nutrition, growth, and encyst-
ment, among other topics. Because cell size, especially 
cell volume, is related to so many physiological pro-
cesses, there was interest in improving the accuracy of 
estimating amoeba cell volume. Two methods were de-
veloped during this time. One expressed the cell volume 
in relation to the size of the stained nucleus (Rogerson 
et al. 1994), and another was based on a conversion 
factor relating the volume of a rounded-up amoeba to 
the length of the locomoting form, applicable to a broad 
range of different amoeba sizes and morphotypes (An-
derson 2006). Amoeba cell volume has been used to es-
timate important variables such as respiration rate and 
amoeba total C-biomass (e.g. Anderson and McGuire 
2013), although the accuracy of estimating C-biomass 
in amoebae and other protists is limited by the precision 
of the conversion factor used in converting cell volume 
to C-biomass units.

Several studies examined processes of new plasma 
membrane genesis essential for cell growth and some 
locomotory processes (e.g. Nachmias 1986, Wilkins 
and Thompson 1974), amoeba energetics (e.g. Roger-
son 1981, Rogerson et al. 1994), and energy conver-
sion efficiencies in amoebae (e.g. Heal 1967). Closely 
associated with energetics are issues of respiration rate 
assessed under defined conditions, and physiological 
responses to anaerobiosis. For example, several studies 
estimated respiration rate of protists including amoebae 
(Baldock et al. 1982, Crawford et al. 1994, Fenchel 
2005) and others examined amoebae tolerance for low 
oxygen concentrations (Cometa et al. 2011). Likewise, 
to maintain respiratory carbohydrate metabolism in het-
erotrophic protists, carbon dioxide assimilation (anaple-
rotic fixation) is considered to be important, especially 
for maintenance of overall balance in carbon metabo-
lism in metabolic pathways, including the tricarboxylic 
cycle. Among the enzymes mediating CO2 heterotroph-
ic C assimilation is phosphoenolpyruvate carboxylase 

(PEP carboxylase). Prescott et al. (1974) examined the 
anaplerotic role of PEP carboxylase in Acanthamoeba 
and concluded that it had specific activity as high as that 
found for several tricarboxylic acid (TCA) cycle en-
zymes in this amoeba. This indicated a potential major 
role in sustaining C input into the TCA cycle from in-
organic carbon, in addition to C sources derived from 
carbohydrate metabolism or other organic substrates.

Osmoregulation is physiologically linked to ener-
getics, partially because energy is required to maintain 
osmotic balance, especially in freshwater environments 
where osmosis tends to drive excessive accumulation 
of water. Moreover, because some amoebae dwell in 
freshwater environments or in soil, where thin films of 
soil water are essential for active growth and feeding, 
the issue of osmoregulation was a topic of considerable 
interest (e.g. Drainville and Gagnon 1973, Geoffrion 
and Larochelle 1984, Larochelle and Gagnon 1978). 
Given the pivotal role of the contractile vacuole (CV) in 
osmotic regulation, several studies examined factors ef-
fecting CV activity, including temperature (Ahmad and 
Couillard 1974), output volume of CVs (Pal 1972), and 
CV internal content and mechanisms of function (Rid-
dick 1968, Wigg et al. 1967). Environmental influences 
on cell form and function were also examined, such as 
the effects of high pressure on rounding up of amoebae 
(Landau 1965), and effects of light on enzymes and cell 
growth (Chang et al. 1991, Dolphin 1970). 

Nutrition. This is a rather omnibus category, en-
compassing research on feeding rate and growth, be-
havior of feeding (phagocytosis), uptake of solutes (pi-
nocytosis), and the role of symbionts that in some cases 
support host nutrition or otherwise promote metabo-
lism. With respect to consumption rate in feeding and 
growth, studies were done in different geographic envi-
ronments (e.g. Bunt 1970, Butler and Rogerson 1977, 
Mayes et al. 1997) as well as the effects of different 
culture media, nutrients and culture properties on the 
growth of amoebae (Adam and Blewett 1967, Pickup et 
al. 2007, Pigon 1970). 

Feeding behavior (prey apprehension and en-
gulfment) has been studied by electron microscopy 
(Goodall and Thompson 1971, Old et al. 1994); or by 
light microscopic evidence of feeding such as phago-
cytic consumption of centric diatoms (Kuhn 1996/97), 
and elaborate, prey-snaring cytoplasmic networks, as in 
Synamoeba during surface feeding on diatoms (Grell 
1994). Mechanisms of phagocytosis were studied by 
several authors cited in Table 5 (e.g. Avery et al. 1995, 
Christiansen and Marshall 1965, Jeon and Jeon 1976); 
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including changes in digestive enzyme activity follow-
ing phagocytosis (Ryter and Bowers 1976). Studies on 
pinocytosis included uptake processes (e.g. Chattergee 
1989, Hanson et al. 1968), and the role of different cati-
ons on induction and inhibition of pinocytosis in Amoe-
ba proteus (Josefsson 1968); and more specifically the 
role of external calcium ions in sucrose uptake (Prusch 
and Hannafin 1979). 

A suite of studies by various authors examined the 
role of endosymbionts that were experimentally intro-
duced in amoebae. These included a host-dependent 
bacterial endosymbiosis experimentally implemented 
over an extended period of time; eventually becoming 
permanent and indispensable to the host (Ahn and Jeon, 
1979), and microinjection of zoochlorellae into Amoeba 
proteus, forming a “hybrid system” examined over time 
for changes in the physiological state of the amoeba, in-
cluding the fate of the injected zoochlorellae (Liu et al. 
2011). Other studies documented a host-specific, endo-
cytic Chlamydia-like bacterium in Saccamoeba limax 
(Michel et al. 2010), the intracellular location of en-
dobiont bacteria in Pelomyxa (Whatley 1976), as well 
as endobionts in some marine amoebae (Schulz et al. 
2014), and evidence that a TM6 bacterium (previously 
only identifiable by DNA sequencing) was present and 
microscopically observed in Vermamoeba vermiformis, 
which incidentally resulted in inhibition of amoeba en-
cystment (Delafont et al. 2015). More recently, three 
endosymbionts of Pelomyxa palustris have been shown 
to be prokaryotes (bacteria and methanogenic archaea), 
thus suggesting they may comprise a multipartite syn-
trophic consortium within the amoeba host cell, some-
what resembling similar syntrophic interactions found 
in complex microbial communities found in sewage 
treatment plant suspensions (Gutiérrez et al. 2017).

Locomotion, reproduction, life cycle and evolution

This part of the section on Physiology (Table 6) en-
compasses the three subtopics listed in the above sub-
head. Locomotion particularly focuses on adhesion and 
chemotaxis with some references to cytoskeleton. Re-
production summarizes research on asexual reproduc-
tion in amoebae, and emerging evidence on the status 
of sexual reproduction based on experimental evidence. 
Life cycle and evolution has two main categories: En-
cystment and excystment, and Evolution and life cycles.

Locomotion. Several recovered publications dealt 
with amoeba attachment and locomotion (e.g. King et 
al. 1983, Lorch 1969, Martin 1987), while others were 
concerned with the mode of locomotion and its mecha-

nisms. For example, to elucidate extension of pseudo-
podia, Brewer and Bell (1969) studied the effects of 
ammonium ions on pseudopodium induction, while 
others such as Grebecki (1982) performed experimen-
tal studies to create models of how locomotion occurs. 
Studies on chemotaxis involved a variety of themes 
ranging from attraction of amoebae to prey, environ-
mental influences on locomotion, and models of move-
ment based on experimental analysis of cellular mecha-
nisms. A variety of experiments were used to study how 
amoebae are attracted to prey, including use of frag-
ments from potential prey (e.g. Jeon and Bell 1965), 
negatively charged proteins extracted from a ciliate po-
tential prey (Nohmi and Tawada 1974), and documen-
tation of prey and predatory activity by Thecamoeba 
spp. (Page 1977). Some studies examined environmen-
tal factors affecting locomotion such as temperature 
(Klopocka and Stockem 1989). Jahn et al. (1972) used 
a capillary suction test to evaluate the pressure gradi-
ent theory of amoeboid motion and reported that their 
results supported a “posterior contraction-hydraulic 
system” as opposed to a “frontal contraction system” 
that Allen (1972) had proposed based on evidence he 
had gathered from microscopic birefringence studies of 
cytoplasmic flow in amoebae.

It became clear very soon in cell biology studies that 
amoeba cytoplasm contains a cytoskeleton composed 
of subcellular, fine structural fibers and tubules, thus 
initiating several lines of investigation on the structure 
and function of the cytoskeleton. Among these were 
studies of the microtubules in amoebae (e.g. Holber-
ton 1969), contractile proteins and their role in adhe-
sion and locomotion (Jones 1966), elucidation of the 
cytoskeletal architecture and its implications for loco-
motion (Tekle and Williams 2017), and evidence for the 
mechanics and control of the cytoskeleton in amoebae 
(Dembo 1989). 

Reproduction. Asexual reproduction by mitosis has 
been known from the earliest microscopic observations 
of amoebae that were maintained in laboratory cul-
tures. However, details of mitosis remained enigmatic, 
but more recently have become elucidated with modern 
microscopic evidence including ultrastructure studies 
(e.g. Schuster 1975). Feldherr (1968), based on ex-
perimental studies of cross-transfer of nuclei between 
amoebae in different phases of mitosis, concluded that 
the breakdown of the nuclear envelope is not a result 
of some cytoplasmic constituent that signals or medi-
ates the transformation, but rather it is a property of 
the nucleus itself, perhaps some co-occurring product 
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of intranuclear changes during late prophase to meta-
phase. Ord (1969) studied the control of DNA synthesis 
in Amoeba proteus, whereas Ron and Prescott (1969) 
studied the timing of DNA synthesis in A. proteus, and 
concluded that the S period occupies approximately the 
first 5–7 hours after onset of interphase for most cells, 
and that DNA synthesis begins sometime within the 
first 15 min. after cytokinesis. Studies at the organismic 
level (e.g. Rogerson 1980) examined factors affecting 
the generation times and reproductive rates in amoebae, 
including temperature and food concentration. Roger-
son reported that temperature had a marked effect upon 
the generation times of Amoeba proteus, when cultured 
with Tetrahymena pyriformis as prey at temperatures of 
20, 15, and 10°C. The length of the cell cycle varied 
from 44 hours at 20°C to 2926 hours at 10°C. Optimum 
reproductive rates were achieved at lower food levels 
as temperature was decreased. 

An issue that has often perplexed the field of pro-
tistology is whether most amoebae are entirely asexual 
(e.g. Lahr et al. 2011) or if there are perhaps only rare 
sexual events that we fail to detect in laboratory stud-
ies. More recently evidence has emerged that extant 
amoebae were ancestrally sexual, but became largely 
asexual. Among other lines of evidence, Tekle et al. 
(2014) reported evidence of parasexual activity in lab-
oratory-cultured amoebae based on microscopic obser-
vations of some peculiar cellular interactions in Coch-
liopodium spp. leading to multiple fusion of amoebae 
(plasmogamy) during laboratory culture. Plasmogamy 
is followed by nuclear fusions within the plasmodial-
like fused cells producing enlarged nuclei with a mix 
of genetic content supplied from the fusing nuclei, this 
ultimately is followed by nuclear fission and cellular 
plasmotomy releasing daughter cells. It is very likely 
that the released daughter cells have nuclei with a new 
combination of chromosomal contents obtained during 
chromosomal mixing that occurs during multiple nucle-
ar fusions. Moreover, Tekle et al. (2017) have presented 
molecular genetic evidence that amoebozoans are an-
cestrally sexual, based on the presence of sex genes and 
potential novel crossover pathways in diverse groups 
of extant amoebae. Other sources of evidence pointing 
toward an ancestral sexuality include studies on diverse 
life cycles in Acanthamoeba, thought to be entirely 
asexual (e.g. Tice et al. 2016); and evidence that amoe-
boid members of the Variosea fuse and can form cm-
wide plasmodia (e.g. Berney et al. 2015).

Life cycle and evolution. A major feature of many 
protists, especially those in terrestrial and fresh water 

environments (where moisture is sometimes unpre-
dictable) is the process of encystment, i.e. the forma-
tion of a resting stage, usually enclosed by some type 
of protective organic envelope or wall. During the late 
1960s, and thereafter, the biochemistry and molecular 
changes during encystment were of particular interest; 
for example, as reviewed by Lloyd (2014) for Acan-
thamoeba, and more broadly by Fouque et al. (2012) 
and references therein. A total of twelve studies were 
retrieved in the online search for the topic of encyst-
ment. Among the broad range of studies that emerged, 
the role of enzymes in encystment particularly attracted 
attention (e.g. Bowen et al. 1969, Leitsch et al. 2010, 
Martin and Byers 1976, Moon 2012, Sykes and Band 
1985, Weisman et al. 1970), as well as changes in bio-
logically significant macromolecules such as proteins 
(Park et al. 2002), unsaturated fatty acids (Pauls and 
Thompson 1981), RNA (Stevens and Pachler 1973), 
and glycogen (Weisman et al. 1970).

Cell processes during encystment occupied consid-
erable attention across several decades of the time pe-
riod reviewed here, including factors regulating encyst-
ment (Atkins et al. 1985), respiration during encystment 
(Band and Mohrlok 1969, Griffiths and Hughes 1969), 
effects of electrolytes and organic compounds on cyst 
formation (Lasman and Shafran 1978), and anaerobio-
sis induction of encystment in Acanthamoeba castel-
lanii (Turner et al. 1997). As a natural sequel, research 
also examined cyst structure and its control during the 
process of encystment. For example, Lasman (1982) 
chronicled the cytoplasmic fine structure of cyst forma-
tion in Acanthamoeba, while Lemgruber et al. (2010) 
focused on the fine structure of the cyst wall. Paster-
nak et al. (1970) used scanning electron microscopy 
(SEM) to examine the changes in surface morphology 
of Acanth amoeba cells during laboratory-induced en-
cystment. In a complementary study, Yang and Vil-
lemez (1994), using immunoanalysis techniques, re-
ported that surface receptors in Acanthamoeba control 
its differentiation in both encystment and excystment. 
They reported that monoclonal antibodies that bind 
specifically to a 40 kD trophozoite surface protein initi-
ate the encystment of the trophozoites, whereas when 
the antibodies are bound to cysts the same monoclonal 
antibodies prevent excystment. When the antibody is 
washed away, both trophozoites and cysts resumed nor-
mal activity. One of the monoclonal antibodies inhibits 
pinocytosis, while another has no effect on pinocytosis.

Further excystment studies, using SEM evidence, 
were reported by Chambers and Thompson (1972), 
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whereas other researchers examined the physiological 
changes including respiration and enzyme activities 
(Stratford and Griffiths 1971), and other studies exam-
ined the effects of organic and inorganic compounds, 
and CO2 during excystment (e.g. Datta 1979).

A few studies on life cycles were recovered during 
this literature search. For example, Anderson (2010) in 
combined laboratory and field investigations examined 
the dynamics of encysted and trophic stages of naked 
amoebae using laboratory culture techniques to deter-
mine the ratio of active and encysted stages of amoe-
bae collected from diverse terrestrial sites varying in 
plant cover, and moisture content during spring and 
summer months at a terrestrial site in N.E. U.S.A. The 
percentage of encysted amoebae varied between 32% 
and 100% depending on sampling locale and moisture 
content. 

Additional evidence was gathered on the dynamic 
relationship that exists between active and encysted 
stages during emergence and proliferation of amoe-
bae, with varying ratios depending on the moisture and 
physical qualities of the soil at the collection site. Bal-
dock et al. (1980) reported laboratory growth rates of 
six species of freshwater amoebae at four different tem-
peratures, and subsequently Baldock and Berger (1984) 
examined the effects of low temperatures on the growth 
of freshwater amoebae, and reported that generation 
times for cultures within a temperature range of 5.0 to 
12.5°C were in the range of 19 hours to 178 hours, but 
decreased with increasing temperature. Minimum tem-
perature for growth in three species fell below 5.0°C.

With respect to evolution, non-testate amoebae lack 
a substantial cell cover or envelope, hence they leave 
no discernible fossil record. Therefore, their evolution 
has not been studied as extensively as other protists, in-
cluding test-bearing amoebae, with a fairly substantial 
fossil record. However, modern molecular phylogenet-
ic methods have been applied to elucidate likely evolu-
tionary patterns in non-testate amoebae (e.g. Cavalier-
Smith et al. 2016, Kang et al. 2017, Tekle et al. 2008) 
resulting in an increasingly refined estimate of phyloge-
netic patterns for major groups of the Amoebozoa.

CONCLUSIONS AND RECOMMENDATIONS

The conclusions presented in this review (1965–
2017) of published research on free-living, non-testate 
amoebae based on recovered citations using specific 
search words must be interpreted in the light of the ap-

proach that was used. The designation of three major 
topics of interest (Biogeography, Ecology, and Physi-
ology), and a suite of related key words, established 
a context and boundary conditions for the kinds of ci-
tations retrieved during the approximately 50 years of 
history. However, during the online search, an earnest 
effort was made to follow-up with additional potential 
key words that emerged in some of the recovered publi-
cations to try to be as complete as possible. However, it 
is clear no search can be exhaustive, and some decisions 
had to be made about the relevance of some recovered 
texts to ensure a reasonable boundary on the number of 
citations included in this review. Nonetheless, a total 
of over 400 publications were recovered and plotted as 
a bar graph (Fig. 1A). Overall, during the earliest dec-
ades of the range of dates, a fairly consistent, though 
variable, number of publications were recovered from 
1965 to approximately 1995. Thereafter, a substantial 
upward increase occurred exceeding 10 publications 
per year after 2004. Biogeography and Ecology publi-
cations (Fig. 1B, C) increased substantially after 1995, 
while the number of Physiology publications (Fig. 1D) 
tended to decrease at that date, but increased in fre-
quency again at approximately 2005.

Biogeographic studies have been an important com-
ponent of protist research, including studies specific to 
amoeboid taxa, particularly documenting the specific 
biogeographic locales of species, their geographic rang-
es, and diversity in varying ecosystems. There is an in-
creasing amount of amoebozoan DNA sequence data in 
gene libraries, and coupled with modern high through-
put sequencing of environmental samples, it should be 
possible to pursue a much more detailed analysis of the 
biogeographic distribution and community composition 
of amoebae across varied environments, globally based 
on environmental gene sampling. Furthermore, single-
cell genomics may provide an important tool to better 
document the taxonomic identity of particular morpho-
types sampled from varying geographic locales and, as-
suming they can be maintained in culture, provide the 
basis for more experimental studies on the environmen-
tal niches of amoebae and their adaptive capacity. 

Alternatively, for isolates that cannot be cultured, 
RNA transcriptome studies using amoebae sampled 
directly from environmental microbial communities in 
varying locales, and dwelling in varied environmental 
conditions, may yield some insights into their state of 
metabolism and biological roles in a particular environ-
ment and at a given point in time. Additionally, tran-
scriptome analyses of experimental laboratory studies 
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of bacteria and protist communities containing amoe-
bae (where lab culturing is possible) can provide tem-
poral evidence of the functional physiology of amoebae 
and other microbes as the dynamics of communities un-
fold over time. 

The fundamental events in the life cycle of amoe-
bae have been substantially documented, and additional 
research using modern molecular genetic techniques 
including transcriptome analyses may elucidate the 
metabolic changes that occur, and the details of cellu-
lar processes, during encystment and excystment. With 
recent emerging evidence that amoebae, previously as-
sumed to be largely or totally asexual, may have ances-
tral sexual stages, it is of increasing importance to use 
modern genetic analytical methods to explore the genet-
ic and developmental status of extant Amoebozoa taxa 
to establish their sexual characteristics in greater detail.

Some important biochemical and physiological 
findings were made during the early decades after 1965, 
especially in relation to fundamental cell processes 
documenting similarities of amoebae to other eukary-
otic cells. At the same time, however, these studies also 
highlighted the unique biochemical and cellular events 
that marked the specialized adaptations of some free-
living amoebae (e.g. encystment, specialized modes 
of nutrition, anaerobisosis, and mechanisms of loco-
motion). These studies, and those emerging in recent 
years on fundamental amoeba cellular processes, estab-
lish a strong foundation, in conjunction with modern 
ecological studies, to pursue a much more expanded 
research agenda on the physiological ecology of free-
living amoebae in different geographic locales and par-
ticular habitats, especially in relation to changing cli-
mate and varied local environmental forcing functions. 

This includes physiological autecology of particular 
amoebozoan taxa, and synecology of eukaryotic com-
munities where free-living amoebae are present. More 
integrated field-based and laboratory studies are needed 
to better document the role of free-living amoebae in 
varied ecological settings; and combined with molecu-
lar genetic techniques may provide a much more de-
tailed account of the bacteria taxa present in prokary-
ote-based, eukaryotic communities, as well as a more 
complete taxonomic accounting of the eukaryote mi-
crobes. Combined laboratory-based culture studies 
with molecular genetic techniques should yield a more 
refined and complete analysis of the varied roles of the 
prokaryotes and amoebae in microbial communities 
temporally, and in relation to changing environmental 
conditions. 

One of the major ecological insights gained in the 
recent decades was the importance of water-column 
flocs and particulates in amoeba plankton dynamics. It 
has been known for a long time that amoeba must at-
tach to a surface to locomote and feed. However, recent 
studies in freshwater and marine environments have 
more fully documented that amoeba abundance, diver-
sity and localization depend on the quality and density 
of suspended matter in the water column. This has been 
particularly insightful in explaining the relative low 
abundance of amoebae in some open ocean locations 
where insufficient suspended substrate is available. 
However, it also opened a productive field of inquiry 
on the role of amoebae in “marine snow” flocs both 
suspended in the water column and settling at depth in 
open ocean locations.

Additional systematic field-based and laboratory re-
search is needed to more fully examine the structure 
and dynamics of amoeba-containing microbial commu-
nities on floc surfaces suspended in the water column 
in various aquatic environments (freshwater to marine). 
Among other potential topics, the successional stages 
that occur when excysting amoebae attach to, and begin 
to proliferate on, bacterial-containing floc needs to be 
more fully documented; especially in relation to ensu-
ing changes in the prokaryote and amoeba populations, 
as well as the variations in biomass among the constitu-
ent taxa inhabiting the floc over time. These studies, 
moreover, may be productively pursued in relation to 
changes in the physical and chemical characteristics of 
the water column (e.g. salinity, inorganic and organic 
nutrient loads of varying composition, temperature, wa-
ter quality including presence or absence of pollutants, 
and oxygen concentrations, etc.).

Syntrophy has become one of the major topics of 
research in natural prokaryote communities, and further 
extension of these studies to examine the possible role 
of amoebozoa as syntrophs within amoeba assemblages 
in microbial communities, and with the prokaryotes in 
these mixed microbial communities, may be an increas-
ingly productive line of inquiry. The particular metabol-
ic roles of ecto- and endobacterial symbionts in amoe-
bae may also contribute to interactions in syntrophic 
metabolic networks of mixed bacterial and protist com-
munities. This includes communities on flocs suspend-
ed in the water column, on surfaces in sediments and 
other solid surfaces, and on particulates and pore spaces 
in soil environments. Research on amoeba-containing 
biofilm communities has been somewhat limited, but 
some of the above-mentioned research strategies may 
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be extended to include biofilm physiological ecology in 
freshwater and marine environments.

Current biogeochemical studies of amoeba-contain-
ing microbial communities are limited, and it is impor-
tant to clarify the potential role of free-living amoebae 
in biogeochemical cycles. On the whole, amoebae typi-
cally may not constitute a major component of the to-
tal ecosystem microbial biomass, but their importance 
in trophodynamics, and capacity to alter the physical 
and chemical environment (locally or more extensive-
ly) within micro domains where these microbial com-
munities are found, may have greater impact on bio-
geochemical cycles than realized here-to-fore. Through 
their alterations of the bacterial composition during 
predation, and release of nutrients during phagotrophy 
or excretion of wastes, amoebae may have important 
forcing functions on the biogeochemistry of aquatic 
and terrestrial ecosystems. With increasing evidence 
that the activity of protists at the very base of eukaryot-
ic microbial communities may have effects that extend 
beyond local ecosystems to global levels, additional re-
search on all aspects of the contributions of prokaryotes 
and eukaryotic microbes to natural environmental pro-
cesses is increasingly important.
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