Magdalena Wiercioch
Schedae Informaticae, Volume 24, 2015, pp. 83 - 92
https://doi.org/10.4467/20838476SI.15.008.3030The selection of data representation and metric for a given data set is one of the most crucial problems in machine learning since it affects the results of classification and clustering methods. In this paper we investigate how to combine a various data representations and metrics into a single function which better reflects the relationships between data set elements than a single representation-metric pair. Our approach relies on optimizing a linear combination of selected distance measures with use of least square approximation. The application of our method for classification and clustering of chemical compounds seems to increase the accuracy of these methods.
Magdalena Wiercioch
Schedae Informaticae, Volume 25, 2016, pp. 103 - 115
https://doi.org/10.4467/20838476SI.16.008.6189Continuous vector representations, as a distributed representations for words have gained a lot of attention in Natural Language Processing (NLP) field. Although they are considered as valuable methods to model both semantic and syntactic features, they still may be improved. For instance, the open issue seems to be to develop different strategies to introduce the knowledge about the morphology of words. It is a core point in case of either dense languages where many rare words appear and texts which have numerous metaphors or similies. In this paper, we extend a recent approach to represent word information. The underlying idea of our technique is to present a word in form of a bag of syllable and letter n-grams. More specifically, we provide a vector representation for each extracted syllable-based and letter-based n-gram, and perform concatenation. Moreover, in contrast to the previous method, we accept n-grams of varied length n. Further various experiments, like tasks-word similarity ranking or sentiment analysis report our method is competitive with respect to other state-of-theart techniques and takes a step toward more informative word representation construction.