Emilia Franczyk
Technical Transactions, Volume 8 Year 2019 (116), 2019, pp. 173-182
https://doi.org/10.4467/2353737XCT.19.087.10866This paper presents an experimental method of determining the velocity of chip flow on the rake surface of a cutting insert during the longitudinal turning of Ti-6Al-4V titanium alloy. A Seco CNMG120408-M1 833 carbide cutting insert without a protective coating was used for the purposes of research. In order to record phenomena in the cutting zone, a PHANTOM V5.2 high-speed camera was used and placed above the area of machining. The camera recorded the process at a speed of 3000 fps. Placing the camera near the cutting zone allowed recording the process of chip formation and its flow along the rake face of the insert. Trials of longitudinal turning were performed in accordance with the test plan, where vc and f were the independent variables. In addition, the tests were performed for two different cutting depths. Processing and analysis of the obtained video sequences were performed with the use of CineViewer 663 and Tracker computer applications. Experimental determination of the velocity of chip flow at the rake face of a cutting insert was conducted by analysing the movement of the characteristic point on the outside side of the chip. Analysis of variance for the obtained results was performed using ANOVA and the regression functions were determined.
Emilia Franczyk
Technical Transactions, Volume 8 Year 2018 (115), 2018, pp. 177-188
https://doi.org/10.4467/2353737XCT.18.124.8899The article presents the results of laboratory tests, the aim of which was to measure cutting forces during parallel turning of an AMS 5643 steel bar. The cutting trials were registered with a 3-axis Kisler 9257B piezoelectric dynamometer, and the DynoWare computer program was used to archive and analyse the results. The experimental test plan for variable cutting parameters (vc, ap, f) was created according to the Taguchi method and the statistical analysis of the results was performed using ANOVA . The work involved carrying out 9 tests with the use of an uncoated carbide cutting insert. The obtained test results will be used to specify a simulation model of the cutting process.
Emilia Franczyk
Technical Transactions, Volume 8 Year 2018 (115), 2018, pp. 189-197
https://doi.org/10.4467/2353737XCT.18.125.8900The paper presents the laboratory measurements results of temperature distribution in the cutting zone during orthogonal turning of a GRDE 2 titanium tube. The cutting tool used during the tests was a bimetallic cut-off tool with an uncoated insert made of P10 sintered carbide. The test plan was developed using the MiniTab16 computer application and the Taguchi method. The tests were performed in accordance with orthogonal table L9, which describes nine cutting trials for two independent factors, cutting speed vc [m/min] and feed rate f [mm/rev], at three different values. The temperature distribution in the cutting zone was measured by means of a FLIR SC 620 thermal imaging camera. The archiving and processing of measurement results was performed with the ThermaCamResearcher Pro 2.9 computer application. The obtained results were used to determine the average temperature for each of the nine trials; then, a statistical analysis of the results was performed.
Emilia Franczyk
Technical Transactions, Volume 8 Year 2019 (116), 2019, pp. 183-194
https://doi.org/10.4467/2353737XCT.19.088.10867This article presents the results of laboratory tests involving the measurement of cutting forces during the orthogonal turning of a tube made of GRADE 2 titanium alloy. The nominal diameter of the turned tube was D = 60 mm, and its wall thickness was 2.77 mm. For research purposes, a Kennametal chisel with an insert marked A3G0500M05P04DF and a holder marked A3SAR2520M0425-075-100 was used. An experimental research plan for variable cutting parameters (f, vc) was developed according to the Taguchi method and statistical analysis of the results was performed using an ANOVA. Three series of tests were performed, one for each of the three different values of tube wall thickness (ap = 2.77, 1.77, 0.5 mm). In accordance with the prepared test plan, nine trials were conducted within each series. Cutting forces were measured during each test with the use of a 3-axis Kisler 9257B piezoelectric dynamometer. DynoWare computer software was used for the archiving and analysis of measurement results.