Kolodziej's subsolution theorem for unbounded pseudoconvex domains
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEKolodziej's subsolution theorem for unbounded pseudoconvex domains
Data publikacji: 14.06.2013
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 7 - 23
https://doi.org/10.4467/20843828AM.12.001.1119Autorzy
Kolodziej's subsolution theorem for unbounded pseudoconvex domains
In this paper we generalize Kolodziej's subsolution theorem to bounded and unbounded pseudoconvex domains, and in that way we are able to solve complex Monge-Ampère equations on general pseudoconvex domains. We then give a negative answer to a question of Cegrell and Kolodziej by constructing a compactly supported Radon measure µ that vanishes on all pluripolar sets in Cn such that µ(Cn) = (2π)n, and forwhich there is no function u in L+ such that (ddcu)=µ. We end this paper by solving a Monge-Ampère type equation. Furthermore, we proveuniqueness and stability of the solution.
1.˚Ahag P., Cegrell U., Czyz˙ R., Ph9m H. H., Monge–Ampère measures on pluripolar sets, J. Math. Pures Appl., 92 (2009), 613–627.
2. Armitage D. H., Gardiner S. J., Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001.
3. Bedford E., Taylor B. A., The Dirichlet problem for an equation of complex Monge– Ampère type, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), pp. 39–50, Lecture Notes in Pure and Appl. Math., 48, Dekker, New York, 1979.
4. Błocki Z., On the definition of the Monge–Ampère operator in C2 , Math. Ann., 328 (2004), 415–423.
5. Błocki Z., The domain of definition of the complex Monge–Ampère operator, Amer. J. Math., 128 (2006), 519–530.
6. Brelot M., Familles de Perron et problème de Dirichlet, Acta. Litt. Sci. Szeged, 9 (1939), 133–153.
7. Caffarelli L., Kohn J. J., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations. II. Complex Monge–Ampère and Uniformly Elliptic Equa- tions, Comm. of Pure and Appl. Math., 38 (1985), 209–252.
8. Carathéodory C., On Dirichlet’s Problem, Amer. J. Math., 59 (1937), 709–731.
9. Cegrell U., On the Dirichlet problem for the complex Monge–Ampère operator, Math. Z., 185 (1984), 247–251.
10. Cegrell U., Convergence in capacity, Canad. Math. Bull., 55, No. 2 (2012), 242–248.
11. Cegrell U., The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), 54 (2004), 159–179.
12. Cegrell U., A general Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math., 94 (2008), 131–147.
13. Cegrell U., Maximal plurisubharmonic functions, Uzbek. Mat. Zh., 2009, 10–16.
14. Cegrell U., Kol-odziej S., The global Dirichlet problem for the complex Monge–Ampère equation, J. Geom. Anal., 9 (1999), 41–49.
15. Cegrell U., Kol-odziej S., The equation of complex Monge–Ampère type and stability of solutiuons, Math. Ann., 334 (2006), 713–729.
16. Cegrell U., Ko-lodziej S., Zeriahi A., Subextension of plurisubharmonic functions with weak singularities, Math. Z., 250 (2005), 7–22.
18. Guan B., The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom., 6 (1998), 687–703.
19. Guan B., A correction to: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function [Comm. Anal. Geom., 6 (1998), 687–703], Comm. Anal. Geom., 8 (2000), 213–218.
20. Jarnicki M., Zwonek W., personal communication, Kraków, Poland, 8th July 2011.
21. Kiselman C. O., Plurisubharmonic functions and potential theory in several complex vari- ables, Development of mathematics 1950–2000, Birkhauser, Basel, 2000, 655–714.
22. Klimek M., Pluripotential theory, London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
23. Kol-odziej S., The range of the complex Monge–Ampère operator, Indiana Univ. Math. J., 43, No. 4 (1994), 1321–1338.
24. Kol-odziej S., The range of the complex Monge–Ampère operator. II, Indiana Univ. Math. J., 44, No. 3 (1995), 765–782.
25. Kol-odziej S., Existence and regularity of global solutions to the com- plex Monge–Ampère equation, IMUJ Preprint 1998/13. (available at: http://www2.im.uj.edu.pl/badania/preprinty/)
26. Kol-odziej S., Weak solutions of equations of complex Monge–Ampère type, Ann. Polon. Math., 73 (2000), 59–67.
27. Kol-odziej S., Regularity of entire solutions to the complex Monge–Ampère equation. Comm. Anal. Geom., 12, No. 5 (2004), 1173-1183.
28. Kol-odziej S., The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., 178 (2005).
29. Lê M. H., Nguyen V. K., Ph;;m H. H., The complex Monge–Ampère operator on bounded domains in Cn , Results Math., 54 (2009), 309–328.
30. Monn D. R., Regularity of the complex Monge–Ampère equation for the radially symmetric functions of the unit ball, Ph. D. Thesis, University of North Carolina at Chapel Hill, 1985.
31. Monn D. R., Regularity of the complex Monge–Ampère equation for the radially symmetric functions of the unit ball, Math. Ann., 275 (1986), 501–511.
32. Perron O., Eine neue behandlung der erten randwertaufgabe fu¨r ∆u = 0, Math. Z., 18 (1923), 42–54.
33. Ph;;m H. H., Boundary values of plurisubharmonic functions and the Dirichlet problem, manuscript (2007).
34. Siu Y. T., Extension of meromorphic maps into K¨ahler manifolds, Ann. of Math. (2), 102 (1975), 421–462.
35. Tsuji M., Potential theory in modern function theory. Reprinting of the 1959 original. Chelsea Publishing Co., New York, 1975.
36. Wiener N., Certain notations in potential theory, J. Math. Phys., MIT 3 (1924), 24–51.
37. Wiener N., The Dirichlet problem, J. Math. Phys., MIT 3 (1924), 127_146.
38. Wiener N., Note on a paper by O. Perron, J. Math. Phys., MIT 4 (1925), 31_32.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 7 - 23
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Kolodziej's subsolution theorem for unbounded pseudoconvex domains
Kolodziej's subsolution theorem for unbounded pseudoconvex domains
Umea University Department of Mathematics and Mathematical Statistics Sweden
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Publikacja: 14.06.2013
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2323
Liczba pobrań: 1610