%0 Journal Article %T Kolodziej's subsolution theorem for unbounded pseudoconvex domains %A Åhag, Per %A Czyż, Rafał %J Universitatis Iagellonicae Acta Mathematica %V 2012 %R 10.4467/20843828AM.12.001.1119 %N Tom 50 %P 7-23 %K Complex Monge-Ampère operator, plurisubharmonic function, Dirichlet problem %@ 0083-4386 %D 2013 %U https://ejournals.eu/czasopismo/universitatis-iagellonicae-acta-mathematica/artykul/kolodziejs-subsolution-theorem-for-unbounded-pseudoconvex-domains %X In this paper we generalize Kolodziej's subsolution theorem to bounded and unbounded pseudoconvex domains, and in that way we are able to solve complex Monge-Ampère equations on general pseudoconvex domains. We then give a negative answer to a question of Cegrell and Kolodziej by constructing a compactly supported Radon measure µ that vanishes on all pluripolar sets in Cn such that µ(Cn) = (2π)n, and forwhich there is no function u in L+ such that (ddcu)=µ. We end this paper by solving a Monge-Ampère type equation. Furthermore, we proveuniqueness and stability of the solution.