The concept of the variance estimation for the neural network approximator by jackknife subsampling
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEThe concept of the variance estimation for the neural network approximator by jackknife subsampling
Data publikacji: 28.03.2014
Czasopismo Techniczne, 2013, Mechanika Zeszyt 1-M (5) 2013 , s. 309 - 316
https://doi.org/10.4467/2353737XCT.14.039.1965Autorzy
The concept of the variance estimation for the neural network approximator by jackknife subsampling
The estimation of a variance for a semi-parametric neural network model variance for geometric properties of sintered metal will be done on the basis of jackknife subsampling method. Calculation results are of great practical significance because it will be possible to use proposed approach in similar microscale modelling. The proposed approach is simple and has many advantages if model identification procedure is computational expensive.
Sekuła M., Sintering process analysis for modified powders of stainless steel AISI 434L, Ph.D. Thesis., Cracow University of Technology, Kraków 2006.
Wojnar L., Image Analysis: Applications in Materials Engineering, CRC Press, Boca Raton, 1998.
Aphelion v 4.1.1., ADCIS, Saint-Contest, France 2012.
Springer Handbook of Engineering Statistics, Springer, London 2006.
Heinz S., Mathematical Modeling, Springer, Heidelberg 2011.
Hinkelman K., Kempthorne O., Design and Analysis of Experiments. Volume 2: Advanced Experimental Design, John Wiley & Sons, Hoboken, NJ, USA 2005.
Muralidhar K., Sarathy R., A theoretical basis for perturbation methods, Stat Comput 13, 2003, 329.
Muralidhar K., Sarathy R., An enhanced data perturbation approach for small data sets, Decision Sci 36, 2005, 513.
Horowitz J.L., Semiparametric Models, in Handbook of Computational Statistics, Gentle J.E., Härdle W.K., Mori Y. (eds.), Springer, Berlin Heidelberg, 2012, 597-618.
Liu J.S., Monte Carlo Strategies in Scientific Computing, Springer Science+Business Media, LLC, New York 2008.
Robert C.P., Casella G., Monte Carlo Statistical Methods, Second Edition, Springer Science+Business Media, LLC, New York 2004.
Rubinstein R.Y., Kroese D.P., Simulation and the Monte Carlo Method, John Wiley & Sons, Hoboken, NJ, USA 2008.
Mammern E., Nandi S., Bootstrap and resampling, in Handbook of Computational Statistics, Gentle J.E., Härdle W.K., Mori Y. (eds.), Springer, Heidelberg 2012
Shao J., Tu D., The Jackknife and Bootstrap, Springer, New York 1995.
Höganäs Handbook for sintered components, Höganäs AB.
Samarasinghe S., Neural Network for Applied Sciences and Engineering, Taylor & Francis Group, LLC, Boca Raton, FL, USA 2007.
Mathcad version 15, Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494, USA, 2010.
STATISTICA (data analysis software system), version 10., StatSoft, Inc., Tulsa, OK, USA 2011.
Informacje: Czasopismo Techniczne, 2013, Mechanika Zeszyt 1-M (5) 2013 , s. 309 - 316
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
The concept of the variance estimation for the neural network approximator by jackknife subsampling
The concept of the variance estimation for the neural network approximator by jackknife subsampling
Institute of Applied Informatics, Faculty of Mechanical Engineering, Cracow University of Technology
Institute of Applied Informatics, Faculty of Mechanical Engineering, Cracow University of Technology
Publikacja: 28.03.2014
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2072
Liczba pobrań: 1445