FAQ

Mathematical model of a flat plate photocatalytic reactor irradiated by solar light

Data publikacji: 22.11.2017

Czasopismo Techniczne, 2017, Volume 11 Year 2017 (114), s. 85 - 93

https://doi.org/10.4467/2353737XCT.17.188.7420

Autorzy

,
Robert Grzywacz
Department of Chemical and Process Engineering, Cracow University of Technology
https://orcid.org/0000-0002-9703-501X Orcid
Wszystkie publikacje autora →
Jakub Szyman
Chair of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Wszystkie publikacje autora →

Tytuły

Mathematical model of a flat plate photocatalytic reactor irradiated by solar light

Abstrakt

W artykule przedstawiono model opisujący pracę płaskiego reaktora fotokatalitycznego, pracującego w świetle słonecznym. Model został oparty o bilans konwekcyjnych i dyfuzyjnych strumieni masy w dwóch strefach: cienkim filmie cieczy i porach warstwy katalizatora. Strumień natężenia światła został opisany za pomocą teorii Kubelka–Munka.

Bibliografia

[1]   Parsons S.,Advanced Oxidation Processes (AOP) for water purification and recovery, Catalysis Today, vol. 53(1), 1999, 51-59.

[2]   Oller I., Malato S., Sanchez-Perez J.A., Combination of Advanced Oxidation Processes and biological treatments for wastewater treatment decontamination – A review, Science of The Total Environmental, vol. 409(20), 2011, 4141-4166.

[3]   Oppenlander T., Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs)-Principles, Reaction Mechanism, Reactor Concepts, Wiley, Darmstadt 2003.

[4] Zhao J., Yang X., Photocatalytic Oxidation for indoor air purification: a literature review, Building and Environmental, vol. 38, 2003, 645-654.

[5]   Preethi V., Kanmani S., Photocatalytic hydrogen production, Materials Science in Semiconductor Processing, vol. 16, 2013, 561-575.

[6]   Mukherjee P.S., Ray A.K., Major Challenges in the Design of a Large-Scale Photocatalytic Reactor for Water Treatment, Chemical Engineering & Technology, vol. 22(3), 1999, 253-260.

[7]   Bahnemann D., Photocatalytic water treatment: solar energy applications, Solar Energy, vol. 77, 2004, 445-459.

[8]   Behnajady M.A., Modirshahla N., Hamzavi R., Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, Journal of Hazardous Materials, vol. 133(1-3), 2006, 226-232.

[9]   Sauer T., Cesconeto Neto G., Jose H.J., Moriera R.F.P.M., Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor, Journal of Photochemistry and Photobiologymistry, vol. 149(1-3), 2002, 147-154.

[10]  Ramamurthy V., Schanze K.S., Semiconductor Photochemistry and Photophysics, Marcel Derrer, Inc., vol. 10, New York 2003.

[11]  Lazar A.M., Varghese S., Nair S.S., Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, vol. 2, 2012, 572-601.

[12]  Dionysiou D.D., Suidan M.T., Baudin I., Laine J.M., Oxidation of organics contaminants in a rotating disk photocatalytic reactor: reaction kinetics in liquid phase and the role of mass transfer based on the dimensionless Damkolher number, Applied Catalysis B: Environmental, vol. 38, 2002, 1-16.

[13]  Al-Ekabi H., Serpone N., Kinetic Studies In Heterogeneous Photocatalysis, 1. Photocatalytic Degradation of Chlorinated Phenols in Areated Aquerous Solutions over TiO2 Supported on a Glass Matrix, Journal of Physical Chemistry, vol. 92, 1988, 5726-5731.

[14]  Khataee A.R., Fathinia M., Aber S., Kinetic Modeling of Liquid Phase Photocatalysis on Supported TiO2 Nanoparticles in a Rectangular Flat-Plate Photoreactor, Industrial & Engineering Chemistry Research, vol. 49, 2010, 12358-12364.

[15]  Ciani A., Goss K.U., Schawrzenbach R.P., Light penetration in soil and particulate minerals, European Journal of Soil Science, vol. 56, 2005, 561-574.

[16]  Gates D.M., Spectral Distribution of Solar Radiation at the Earth’s Surface, Science, vol. 151(3710), 1966, 523-529.

[17]  Nogueira R.F.P., Jardim W.F., TiO2-fixed-bed reactor for water decontamination using solar energy, Solar Energy, vol. 56(5), 1996, 471-477.

[18]  Sclafani A., Palmisano L., Schiavello M., Influence of the Preparation Methods of TiO2 on Photocatalytic Degradation of Phenol in Aqueous Dispersion, Journal of Physical Chemistry, vol. 94, 1990, 829-832.

[19]  Cabrera M.I., Alfane O.M., Cassano A.E., Absorption and Scattering Coefficients of Titanium Dioxide Particulate Suspensions in Water, Journal of Physical Chemistry, vol. 100, 1996, 20043-20050.

[20]  Zhang Z., Anderson W.A., Moo-Young M., Rigorous modelling of UV-absorption by TiO2 films in a photocatalytic reactor, AIChE Journal, vol. 46(7), 2000, 1461-1470.

[21]  Brandi R.J., Alfano O.M., Cassano A.E., Modeling of flat plate photocatalytic reactor, 5.World Congress of Chemical Engineering, San Diego, 14-18 July 1996, 1118.

[22]  Do D.D., Adsorption analysis: equilibria and kinetics, Imperial College Press, Singapore 1998.

Informacje

Informacje: Czasopismo Techniczne, 2017, Volume 11 Year 2017 (114), s. 85 - 93

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

Mathematical model of a flat plate photocatalytic reactor irradiated by solar light

Angielski:

Mathematical model of a flat plate photocatalytic reactor irradiated by solar light

Autorzy

https://orcid.org/0000-0002-9703-501X

Robert Grzywacz
Department of Chemical and Process Engineering, Cracow University of Technology
https://orcid.org/0000-0002-9703-501X Orcid
Wszystkie publikacje autora →

Department of Chemical and Process Engineering, Cracow University of Technology

Chair of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology

Publikacja: 22.11.2017

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Robert Grzywacz (Autor) - 50%
Jakub Szyman (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski