FAQ

Degeneration of Kähler-Ricci solitons on Fano manifolds

Publication date: 09.12.2015

Universitatis Iagellonicae Acta Mathematica, 2015, Volume 52, pp. 29-43

https://doi.org/10.4467/20843828AM.15.004.3730

Authors

,
D.H. Phong
Columbia University
, United States of America
Contact with author
All publications →
,
Jian Song
Rutgers University, Piscataway, NJ, USA
Contact with author
All publications →
Jacob Sturm
Rutgers University, Piscataway, NJ, USA
Contact with author
All publications →

Download full text

Titles

Degeneration of Kähler-Ricci solitons on Fano manifolds

Abstract

We consider the space KR(n, F) of Kähler–Ricci solitons on n-dimensional Fano manifolds with Futaki invariant bounded by F. We prove a partial C0 estimate for KR(n, F) as a generalization of the recent work of Donaldson-Sun for Fano Kähler–Einstein manifolds. In particular, any sequence in KR(n, F) has a convergent subsequence in the Gromov- Hausdorff topology to a Kähler–Ricci  soliton on  a Fano variety  with  log terminal singularities.

References

Download references

1. Aubin T., Non-linear analysis on manifolds. Monge–Amp`ere equations, Springer-Verlag, New York, 1982.

2. Cheeger J., Colding T. H., On the structure of spaces with Ricci curvature bounded below. I., J. Diff. Geom., 45 (1997), 406–480.

3. Cheeger J., Colding T. H., On the structure of spaces with Ricci curvature bounded below. II., J. Diff. Geom., 54 (2000), 13–35.

4. Cheeger J., Colding T. H., On the structure of spaces with Ricci curvature bounded below. III., J. Diff. Geom., 54 (2000), 37–74.

5. Cheeger J., Colding T. H., Tian G., On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12 (2002), 873–914.

6. Cao H. D., Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, 27 (2006), no. 2, 121–142.

7. Donaldson S., Sun S., Gromov-Hausdorff limits of K¨ahler manifolds and algebraic geometry, Acta Math., 213 (2014), no. 1, 63–106.

8. Eyssidieux P., Guedj V., Zeriahi A., Singular K¨ahler-Einstein metrics, J. Amer. Math. Soc., 22 (2009), no. 3, 607–639.

9. Fang F.,  Zhang Y.,  Zhang Z., Maximum solutions of normalized Ricci  flow on 4-manifolds, Comm. Math. Phys., 283 (2008), no. 1, 1–24.

10. Ivey T., Ricci solitons on compact three-manifolds, Diff. Geom. Appl., 3 (1993), 301–307.

11. Kollar J., Miyaoka Y., Mori S., Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom., 36 (1992), 765–779.

12. Morrow J., Kodaira K., Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.- London, 1971.

13. Nadel A. M. The boundedness of degree of Fano varieties with Picard number one, J. Amer. Math. Soc., 4 (1991), no. 4, 681–692.

14. Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.

15. Phong D. H., Song J., Sturm J., Weinkove B., On the convergence of the modified K¨ahler– Ricci flow and solitons, Comment. Math. Helv., 86 (2011), no. 1, 91–112.

16. Sesum N., Tian G., Bounding scalar curvature and diameter along the K¨ahler Ricci flow (after Perelman) and some applications, Jour. Inst. Math. Juss., 7 (2008), 575–587.

17. Tian G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101 (1990), no. 1, 101–172.

18. Tian G., Zhang Z., Degeneration of K¨ahler–Ricci solitons, Int. Math. Res. Not. IMRN, 2012, no. 5, 957–985.

19. Wang X., Zhu X., K¨ahler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., 188 (2004), no. 1, 87–103.

20. Yau S.-T., On the Ricci curvature of a compact K¨ahler manifold and the complex Monge–Amp`ere equation, I, Comm. Pure Appl. Math., 31 (1978), 339–411.

21. Yau S.-T., Open problems in geometry, Proc. Symposia Pure Math., 54 (1993), 1–28.

22. Zhang Z., Degeneration of shrinking Ricci solitons, Int. Math. Res. Not. IMRN, 2010, no. 21, 4137–4158.

Information

Information: Universitatis Iagellonicae Acta Mathematica, 2015, Volume 52, pp. 29-43

Article type: Original article

Authors

Columbia University
United States of America

Rutgers University, Piscataway, NJ, USA

Rutgers University, Piscataway, NJ, USA

Published at: 09.12.2015

Article status: Open

Licence: None

Percentage share of authors:

D.H. Phong (Author) - 33%
Jian Song (Author) - 33%
Jacob Sturm (Author) - 34%

Article corrections:

-

Publication languages:

English

View count: 2503

Number of downloads: 1471

<p>Degeneration of Kähler-Ricci solitons on Fano manifolds</p>

Degeneration of Kähler-Ricci solitons on Fano manifolds

cytuj

pobierz pliki

RIS BIB ENDNOTE