There exist one-dimensional transitive cellular automata with non-empty set of strictly temporally periodic points
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEThere exist one-dimensional transitive cellular automata with non-empty set of strictly temporally periodic points
Publication date: 06.06.2014
Schedae Informaticae, 2013, Volume 22, pp. 41 - 45
https://doi.org/10.4467/20838476SI.13.004.2089Authors
There exist one-dimensional transitive cellular automata with non-empty set of strictly temporally periodic points
In a Cantor metric space BZ, we present a one-sided cellular
automaton which positively answers the question
Does it exist a transitive cellular automaton (BZ, F) with non-empty set of
strictly temporally periodic points?
The question can be found in a current and recognized literature of the subject.
Acerbi L., Dennunzio A., Formenti E.; Conservation of some dynamical prop- erties for operations on cellular automata, Theoretical Computer Science 410, 2009, pp. 3685{3693.
Banks J., Brooks J., Cairns G., Davis G., Stacey P.; On Devaney's denition of chaos, American Mathematical Monthly 99, 1992, pp. 332{334.
Blanchard F., Cervelle J., Formenti E.; Some results about the chaotic behavior of cellular automata, Theoretical Computer Science 349, 2005, pp. 318{336.
Blanchard F., Maass A.; Dynamical properties of expansive cellular automata, Israel Journal of Mathematics 99, 1997, pp. 149{174.
Boyle M., Kitchens B.; Periodic points for onto cellular automata, Indagationes Mathematicae 10, 1999, pp. 483{493.
Dennunzio A., Di Lena P., Formenti E., Margara L.; On the directional dynamics of additive cellular automata, Theoretical Computer Science 410, 2009, pp. 4823{4833.
Dennunzio A., Di Lena P., Margara L.; Strictly temporally periodic points in cellular automata, Automata and JAC 2012, EPTCS 90, pp. 225-235.
Di Lena P.; On computing the topological entropy of one-sided cellular automata, Journal of Cellular Automata 2, 2007, pp. 121{130.
Di Lena P., Margara L.; Row subshifts and topological entropy of cellular au- tomata, Journal of Cellular Automata 2, 2007, pp. 131{140.
Forys W., Matyja J., An example of one-sided, D-chaotic CA over four ele- mentary alphabet, which is not E-chaotic and not injective, Journal of Cellular Automata 6, 2011, pp. 231{243.
Hedlund G.A.; Endomorphisms and automorphisms of the shift dynamical sys- tems, Math. Systems Theory 3, 1969, pp. 320{375.
Kitchens B.P.; Symbolic dynamics: one-sided, two-sided and countable state Markov shifts, Springer-Verlag, Berlin 1998.
Kurka P.; Topological and symbolic dynamics, SMF, Cours Specialises, 2003.
Kurka P.; Topological dynamics of one-dimensional cellular automata, Encyclopedia of complexity and system sciences, Springer-Verlag, Berlin 2008.
Lind D., Marcus B.; An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
Walters P.; An Introduction to Ergodic Theory, Springer-Verlag, New York 1982.
Information: Schedae Informaticae, 2013, Volume 22, pp. 41 - 45
Article type: Original article
Titles:
There exist one-dimensional transitive cellular automata with non-empty set of strictly temporally periodic points
There exist one-dimensional transitive cellular automata with non-empty set of strictly temporally periodic points
Silesian Technical University, Department of Computer Science and Econometrics, Poland
Published at: 06.06.2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2984
Number of downloads: 1530