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Abstract. In a Cantor metric space B Z, we present a one-sided cellular

automaton which positively answers the question

Does it exist a transitive cellular automaton (B Z, F ) with non-empty set of

strictly temporally periodic points?

The question can be found in a current and recognized literature of the subject.
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1. Introduction

Dynamics of cellular automata have been investigated widely in mathematics, physics
and theoretical computer science. In metric Cantor space of right infinite words B N

or bi-infinite words B Z there are presented constructions of one-dimensional, transi-
tive cellular automata [1, 4, 6] having or not some specified properties. The research
on the dynamics of transitive cellular automata in B N (B Z) is still carried out [1, 7].
In particular, two statements about transitive linear cellular automata and positively
expansive automata (B Z, F ) are presented in [7]. In these statements occurs a no-
tion of a strictly temporally periodic point which means a point in B Z, which is
F -periodic and not σ-periodic. The set of all strictly temporally periodic points of
a cellular automaton (B Z, F ) is denoted STP (F ). The authors are convinced that
a positively expansive or linear and transitive cellular automaton (B Z, F ) has no
strictly temporally periodic points.
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A positively expansive cellular automaton (B N(B Z), F ) is transitive [4, 14].
Transitiviy is connected with the notion of chaos in the Devaney sense. It is true
that a cellular automaton (B N(B Z), F ) is chaotic in the Devaney sense if and only if
is transitive and its set of F -periodic points is dense [2]. The authors consider in [7]
some arguments for the hypothesis that any transitive cellular automaton (B Z, F )
is chaotic in the Devaney sense if and only if it has no strictly temporally periodic
points. They formulate a natural question
Question 3.7 – What is the largest class of sensitive CA where the set of strictly
temporally periodic points is empty? Is this class the one of topologically transitive
CA? Or, if a CA (B Z, F ) is transitive, can STP (F ) be non empty?

In this paper we consider a strictly temporally periodic point also as an element
of B N. This allows us to point out an example of a cellular automaton in Cantor
metric space of right-infinite words [10] and then bi-infinite, that is in B N and B Z

which, in both cases, positively answers Question 3.7 [7]. Our justification is based
on [10] and [1].

2. Preliminaries

We denote by N, Z, R the sets of non-negative integers, integers and real numbers,
respectively. #Y stands for the cardinality of a set Y. A finite and non-empty set
B is referred as an alphabet. A finite (non-empty) word w over B is a function
w : [0, k] −→ B defined on a discrete interval [0, k], where k ∈ N. The length of
a word w, denoted by |w|, is equal to the cardinality of its domain. The set of all
such defined words with concatenation of words ” · ” is a free semigroup (B+, ·).
The set of all words in B+ with the length equal to n is denoted Bn. Denoting λ
the unit element of concatenation of words (empty word) we obtain a free monoid
(B∗, ·) . By the definition |λ| = 0.

A right-infinite (bi-infinite) word is a function on [0, ∞) = N ((−∞, ∞) = Z)
with values in B. The set of all right-infinite (bi-infinite) words is denoted by
B N(B Z). It is convenient to extend naturally concatenation on pairs of words in
B∗ × B N obtaining as a result an infinite word in B N. We will use also in the
sequel words defined on finite discrete intervals of the form I = [i, j], where i ≤ j,
i, j ∈ Z. If i = j , then we denote such degenerated interval by [i, i], [i] or {i} .
For two discrete intervals I, J such that J ⊂ I and for a word u defined on I we
denote by uJ the restriction of u to J .

In the sequel we assume that #B ≥ 2.

Define a metric d : B N(B Z) × B N(B Z)→ R putting for any x, y ∈ B N (B Z)

d(x, y) =

{
2−i if x 6= y
0 otherwise

where i = min{|j| ≥ 0 : x(j) 6= y(j)}.
The resulted topological space B N (B Z) is a metric Cantor space [1, 14].
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Let us fix r ∈ N and assume that there is given a mapping F ′ : Br+1 → B. For
any x ∈ B N(B Z), i ∈ N (Z ) there exists w ∈ Br+1 such that w(j) = x(i+ j) for
any j ∈ [0, r]. We put in this case F ′(x[i, i+r]) = F ′(w). A mapping F : B N(B Z)→
B N(B Z) such that F (x)(i) = F ′(x[i, i+r]) for any x ∈ B N(B Z) and i ∈ N (Z) is
referred to as a one-sided cellular automaton [1, 4, 8]. A mapping F ′ : Br+1 → B
is called a local rule of F.

Any one-sided cellular automaton (B N(B Z), F ) is continuous. A point x ∈
B N (B Z) is F -periodic if and only if there exists n ∈ N\{0} such that Fn(x) = x.
If F (x) = x, then x is a fixed point of F. A one-sided surjective cellular automaton
F is transitive if and only if for any open and non-empty sets U, V ⊂ B N (B Z)
there exists n ∈ N \ {0} such that U ∩ F−n(V ) 6= ∅ [4, 16].

If σ(x)(i) = σ′(x[i, i+1]) = x(i + 1) for any x ∈ B N (B Z) and i ∈ N (Z ), then

a one-sided cellular automaton (B N(B Z), σ) is referred to as one-sided (two-sided)
full shift [12, 14].

A word x ∈ B N (B Z), which is F -periodic and not σ-periodic is called a strictly
temporally periodic point [7]. A word x ∈ B N (B Z) which is F -periodic and σ-
periodic is referred to as a jointly periodic point [1, 5]. A mapping F : B N(B Z)→
BN(BZ) can be considered as a symbolic dynamical system (BN(BZ), F ), abbreviated
here as SDS [14].

3. Example of a cellular automaton F

The main goal of this section is to present a cellular automaton F with the announced
properties.

We fix the following alphabets B = {0, 1, 2, 3}, and E = {0, 1} ⊂ B. Remind
that for a ∈ R the floor of a, denoted bac is a maximal integer not greater then a.
For k ∈ Z, n ∈ N \ {0} kmodn =k − n

⌊
k
n

⌋
.

For any a, b ∈ B a local rule F ′ : B2 → B of the one-sided cellular automaton
(B N(B Z), F ) is of the following form:
F ′(ab) = (a+ ba/2c [bb/2c+ 1]) mod 2+2 ((ba/2c+ bb/2c)mod 2) .

From [1, 10] follow presented below properties of the one-sided cellular automaton
(B N(B Z), F ) .

Proposition 1 [10] Cellular automaton (B N, F ) is transitive.

Proposition 2 [1] If (B N, F ) is transitive, then (B Z, F ) is transitive also.

Let us fix two infinite words y ∈ B N and z ∈ B Z such that
y(0) = 1, y(i) = 0 for any i ∈ N \ {0},
z[0,∞) = y, z(i) = 0 for any i ∈ Z \ N.

Lemma 1 For any k ∈ N \ {0} it holds F (y) = y , σk(y) 6= y and F (z) = z and
σk(z) 6= z .
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Proof. Observe that F ′(ab) = a for any a, b ∈ E. Thus F (x) = x for any
x ∈ E N(E Z) in particular F (y) = y (F (z) = z). For k ∈ N \ {0} assume that
σk(y) = u ∈ B N. Hence u(i) = 0 for any i ∈ N. Thus σk(y) = u 6= y for any
k ∈ N \ {0}. If σk(z) = v ∈ B Z then v(−k) = 1 i v(i) = 0 for any i ∈ Z \ {−k}.
Thus σk(z) = v 6= z for any k ∈ N \ {0}.

Propositions 1 and 2 and Lemma 1 imply the subsequent corollary.

Corollary 1 The word y ∈ B N is a strictly temporally periodic point of the transi-
tive cellular automaton (B N, F ). The word z ∈ B Z is a strictly temporally periodic
point of the transitive cellular automaton (B Z, F ).

It is possible to prove that the one-sided cellular automaton (B Z, F ) has a dense
set of jointly periodic points [5], what means that it is chaotic in the Devaney sense
[2].

4. Conclusion

There exist one-dimensional, transitive cellular automata with non-empty sets of
strictly temporally periodic points which are chaotic in the Devaney sense.
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