FAQ
logo of Jagiellonian University in Krakow

Rigorous Numerics for PDEs with Indefinite Tail: Existence of a Periodic Solution of the Boussinesq Equation with Time-dependent Forcing

Publication date: 11.04.2016

Schedae Informaticae, 2015, Volume 24, pp. 143 - 158

https://doi.org/10.4467/20838476SI.15.014.3486

Authors

,
Aleksander Czechowski
Delft University of Technology, Delft, The Netherlands
https://orcid.org/0000-0002-6054-9842 Orcid
All publications →
Piotr Zgliczyński
Jagiellonian University in Kraków, Gołębia 24, 31-007 Kraków, Poland
All publications →

Titles

Rigorous Numerics for PDEs with Indefinite Tail: Existence of a Periodic Solution of the Boussinesq Equation with Time-dependent Forcing

Abstract

We consider the Boussinesq PDE perturbed by a time-dependent forcing. Even though there is no smoothing effect for arbitrary smooth initial data, we are able to apply the method of self-consistent bounds to deduce the existence of smooth classical periodic solutions in the vicinity of 0. The proof is non-perturbative and relies on construction of periodic isolating segments in the Galerkin projections.

References

[1] Zgliczyn´ski P., Mischaikow K., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math., 2001, 1(3), pp. 255– 288.
[2] Zgliczyn´ski P., Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE – a computer-assisted proof. Found. Comput. Math., 2004, 4(2), pp. 157–185.
[3] Zgliczyn´ski P., Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal., 2010, 36(2), pp. 197–262.
[4] Zgliczyn´ski P., Steady state bifurcations for the Kuramoto-Sivashinsky equation – a computer assisted proof. AIMS J. of Comp. Dyn., to appear.
[5] Zgliczynski P., Attracting fixed points for the Kuramoto-Sivashinsky equation: a computer assisted proof. SIAM J. Appl. Dyn. Syst., 2002, 1(2), pp. 215–235.
[6] Cyranka J., Existence of Globally Attracting Fixed Points of Viscous Burgers Equation with Constant Forcing. A Computer Assisted Proof. Topol. Methods Nonlinear Anal., to appear.
[7] Cyranka J., Zgliczyn´ski P., Existence of Globally Attracting Solutions for OneDimensional Viscous Burgers Equation with Nonautonomous Forcing – A Computer Assisted Proof. SIAM J. Appl. Dyn. Syst., 2015, 14(2), pp. 787–821.
[8] Arioli G., Koch H., Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal., 2010, 197(3), pp. 1033–1051.
[9] Arioli G., Koch H., Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst., 2010, 9(3), pp. 1119–1133.
[10] Day S., Lessard J.P., Mischaikow K., Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 2007, 45(4), pp. 1398–1424.
[11] Gameiro M., Lessard J.P., Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differential Equations, 2010, 249(9), pp. 2237–2268.
[12] Boussinesq J., Thorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl., 1872, 17(2), pp. 55–108.
[13] Manoranjan V.S., Mitchell A.R., Morris J.L., Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Statist. Comput., 1984, 5(4), pp. 946–957.
[14] Hirota R., Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Mathematical Phys., 1973, 14, pp. 810–814.
[15] Zakharov V.E., On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys.-JETP, 1974, 38, pp. 108–110.
[16] Czechowski A., personal home page. http://www.ii.uj.edu.pl/˜czechows.
[17] Srzednicki R., Periodic and constant solutions via topological principle of Waz˙ewski. Univ. Iagel. Acta Math., 1987, 26, pp. 183–190.
[18] Zgliczyn´ski P., Trapping regions and an ODE-type proof of the existence and uniqueness theorem for Navier-Stokes equations with periodic boundary conditions on the plane. Univ. Iagel. Acta Math., 2003, 41, pp. 89–113.
[19] Srzednicki R., Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations. Nonlinear Anal., 1994, 22(6), pp. 707– 737.
[20] Srzednicki R., W´ojcik K., A geometric method for detecting chaotic dynamics. J. Differential Equations, 1997, 135(1), pp. 66–82.
[21] CAPD: Computer Assisted Proofs in Dynamics, a Package for Rigorous Numerics. http://capd.ii.uj.edu.pl

Information

Information: Schedae Informaticae, 2015, Volume 24, pp. 143 - 158

Article type: Original article

Titles:

Polish:

Rigorous Numerics for PDEs with Indefinite Tail: Existence of a Periodic Solution of the Boussinesq Equation with Time-dependent Forcing

English:

Rigorous Numerics for PDEs with Indefinite Tail: Existence of a Periodic Solution of the Boussinesq Equation with Time-dependent Forcing

Authors

https://orcid.org/0000-0002-6054-9842

Aleksander Czechowski
Delft University of Technology, Delft, The Netherlands
https://orcid.org/0000-0002-6054-9842 Orcid
All publications →

Delft University of Technology, Delft, The Netherlands

Jagiellonian University in Kraków, Gołębia 24, 31-007 Kraków, Poland

Published at: 11.04.2016

Article status: Open

Licence: None

Percentage share of authors:

Aleksander Czechowski (Author) - 50%
Piotr Zgliczyński (Author) - 50%

Article corrections:

-

Publication languages:

English