cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEPublication date: 24.03.2017
Schedae Informaticae, 2016, Volume 25, pp. 209 - 225
https://doi.org/10.4467/20838476SI.16.016.6197Authors
[1] Adamu E., Bogdan P., Crespo T., Hajto Z., An effective study of polynomial maps. Journal of Algebra and Its Applications, 2017, 16(5).
[2] Campbell L.A., A condition for a polynomial map to be invertible. Mathematische Annalen, 1973, 205(3), pp. 243–248.
[3] Crespo T., Hajto Z., Picard-vVessiot theory and the Jacobian problem. Israel Journal of Mathematics, 2012, 186(1), pp. 401–406.
[4] Adamus E., Bogdan P., Hajto Z., An effective approach to Picard-Vessiot theory and the Jacobian Conjecture, 2015, submitted.
[5] M¨uller N.T., Uniform Computational Complexity of Taylor Series. In: 14th International Colloquium on Automata, Languages and Programming, London, UK, UK, Springer-Verlag, 1987, pp. 435–444.
[6] Bardet M., Faug`ere J.C., Salvy B., On the complexity of the F5 Gr´’obner basis algorithm. Journal of Symbolic Computation, 2014, 70, pp. 1–24.
[7] Faug`ere J.C., Safey El Din M., Spaenlehauer P.J., Gr¨obner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity. Journal of Symbolic Computation, 2011, 46(4), pp. 406–437 Available online 4 November 2010.
[8] Adamus E., Bogdan P., Crespo T., Hajto Z., An effective study of polynomial maps, 2016, submitted.
[9] Developers T.S., Sage Mathematics Software (Version 7.1). 2015.
[10] Winkler F., Polynomial Algorithms in Computer Algebra. Texts & Monographs in Symbolic Computation. Springer Vienna, 1996.
[11] van den Essen A., Polynomial Automorphisms: and the Jacobian Conjecture (Progress in Mathematics). Birkhuser, 2000.
[12] Yagzhev A.V., Keller’s problem. Siberian Mathematical Journal, 1980, 21(5), pp. 747–754.
[13] Bass H., Connell E.H., Wright D., The Jacobian conjecture: Reduction of degree and formal expansion of the inverse. Bulletin of the AMS – American Mathematical Society (NS), 1982, 7(2), pp. 287–330.
[14] Druzkowski L.M., An Effective Approach to Keller’s Jacobian Conjecture. Mathematische Annalen, 1983, 264, pp. 303–314.
Information: Schedae Informaticae, 2016, Volume 25, pp. 209 - 225
Article type: Original article
Titles:
Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
Published at: 24.03.2017
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 1929
Number of downloads: 1703