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Abstract. In this paper we will recall the inversion algorithm described in [1].

The algorithm classifies polynomial automorphisms into two sets: Pascal finite

and Pascal infinite. In this article the complexity of the inversion algorithm

will be estimated. To do so, we will present two popular ways how Computer

Algebra Systems (CASes) keep the information about multivariate polynomials.

We will define the complexity as the amount of simple operations performed

by the algorithm as a function of the size of the input. We will define simple

operations of the algorithm. Then we will estimate complexity of checking that

the polynomial map is not a polynomial automorphism. To do so we will use

theorem 3.1 from [1].
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1. Introduction

Checking if a polynomial map is a polynomial automorphism is a very interesting
problem investigated by many mathematicians. This problem is strongly connected
to the Jacobian Conjecture. That problem was established by Ott-Heinrich Keller in
his article Ganze Cremona-Trasformationen published in 1939. The problem stated
by Keller is in fact a question:
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Question 1 (The Keller’s problem) Let F1, ..., Fn be polynomials such that Fi ∈
Z[X1, ..., Xn] for each i ∈ {1, ..., n} and the determinant det

(
∂Fi

∂Xj

)
1≤i,j≤n

is equal to

1. Is it true that, Xi can be expressed as a polynomial with integer coefficients in the
variables F1, ..., Fn?

Nowadays the Keller’s problem is known as the Jacobian Conjecture:

Conjecture 2 (The Jacobian Conjecture) Let F = (F1, ..., Fn) : Kn → Kn be
a polynomial map, where K is an algebraically closed field of characteristic 0 and n
is an integer. The determinant of the Jacobian Matrix of the polynomial mapping F
is a non-zero constant if and only if F is a polynomial automorphism.

This hypothesis has been studied by many mathematicians who used a lot of different
mathematical theories. One of them was L. Andrew Campbell, who in [2] stated the
following theorem:

Theorem 3 Let F : Cn → Cn be a polynomial map. The mapping F has a polyno-
mial inverse if and only if the determinant of the Jacobian Matrix of F never vanishes
and it induces a normal function field extension.

The next significant result in the research of the Jacobian Conjecture is an article of
Teresa Crespo and Zbigniew Hajto [3]. They generalized the approach of Campbell
and described the hypothesis using the language of the differential Galois theory in
the following theorem:

Theorem 4 Let K be an algebraically closed field of a characteristic zero and let n be
an integer. Let F = (F1, ..., Fn) : Kn → Kn be a polynomial mapping such that
the determinant of its Jacobian Matrix is a non-zero constant. Let δ1, ..., δn be the
Nambu derivations which are defined by the formula:




δ1
...
δn


 =

(
J−1

)T



∂
∂X1

...
∂

∂Xn


 ,

where J is the Jacobian Matrix of F . The following conditions are equivalent:

1. The function F is invertible and its inverse is a polynomial function.

2. The differential field (K(X1, ..., Xn), {δ1, ..., δn}) is a Picard-Vessiot extension
of K.

3. The finite field extension K(F1, ..., Fn) of K(X1, ..., Xn) is a Galois extension.

4. The elements X1, ..., Xn satisfy Wδ1,...,δn(X1, ..., Xn) 6= 0 and

Wθ1,...,θn(X1, ..., Xn)

Wδ1,...,δn(X1, ..., Xn)
∈ K(F1, ..., Fn)

for n-tuples θ1, ..., θn of order not greater than n + 1 of the semi-group of dif-
ferential operators generated by δ1, ..., δn.

The fourth point of the theorem above gives a criterion to check if a polynomial
mapping F is a polynomial automorphism. This criterion is called the Wronskian
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Criterion. In [4] we reduced the number of the Wronskians which should be con-
sidered to be sure that a given polynomial mapping is a polynomial automorphism.
During researching the Wronskian Criterion we used the Groebner Basis. As an al-
ternative we invented the inversion algorithm. In [1] we described this algorithm, we
discussed its properties and proved its correctness. The very natural question which
appears after describing an algorithm and proving its correctness is the question about
its computational complexity. This article answers this question.

The computational complexity estimation of calculating mathematical functions is
discussed very often. For example Müller [5] estimated the complexity of computation
of Taylor series. There are many articles about the computational complexity of
algorithms computing the Groebner Basis. For example: [6] or [7].

The set of polynomial automorphisms which are inverted are called Pascal finite.
The set of Pascal finite polynomial automorphisms has very interesting properties,
which are discussed in [8]. Hence, our algorithm defines the new classification of the
polynomial automorphisms. This classification can be useful to study the Jacobian
Conjecture.

In the section 2 there is a description of our inversion algorithm and example of
implementation of this algorithm. In the section 3, one can find the most common
methods to store multivariate polynomials in computer programmes. The fourth
section contains the definition of the computational complexity and the estimation of
the complexity of the inversion algorithm. In the section 5, we recall Theorem 3.1
from [1] which let us estimate the number of steps that should be performed by the
algorithm in order to obtain an inverse mapping. In the section 6 one can find the
conclusion, which compares our algorithm with other ones.

2. The inversion algorithm

In [1] we presented the following algorithm, constructed in order to obtain the inverse
of a given polynomial mapping F .

INPUT :

� Polynomial map F : Kn → Kn

� Polynomial P ∈ K[X] = K[X1, ..., Xn]

OUTPUT :

� Polynomial G ∈ K[F ] = K[F1, ..., Fn] such that: G(F (X))− P (X) = 0

This algorithm finds the polynomial R ∈ K[F ] for a given polynomial P ∈ K[X]
whenever it exists. If we put one of the variables X1, ..., Xn as polynomial P , we
obtain the inverse if F , if it exist.

STEP 0 : P0(X1, ..., Xn) = P (X1, ..., Xn)
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STEP 2 : P1(X1, ..., Xn) = P0(F1, ..., Fn)− P0(X1, ..., Xn)

...

STEP k : Pk(X1, ..., Xn) = Pk−1(F1, ..., Fn)− Pk−1(X1, ..., Xn)

STOP : if Pk(X1, ..., Xn) = 0 for some k ∈ N+ then algorithm stops and polynomial
R can be obtained. The corollary (formulated and proved in [1]) below describes
how the polynomial R can be found.

Corollary 5 Let F be a polynomial map. If Pk = 0, then F is invertible and the
inverse map R if F is given by:

G(X) =

k−1∑

l=0

(−1)lPl(X)

An implementation of this algorithm in Sage1 can be found below:

def inversion_algorithm(R1, R2, F, P):

’’’

:param R1: Ring K[X_1,...,X_n]

:param R2: Ring K[F_1,...,F_n]

:param F: Polynomial mapping F = (F_1,...,F_n)

:param P: Polynomial in ring K[X_1,...,X_n] to inverse

:return: Polynomial G in ring K[F_1,...,F_n] such that G(F)-P(X)=0

’’’

Fs = R2.gens()

G = 0

while P != 0:

G = P(Fs) - G

P = P(F) - P

return G

This version of the algorithm is very easy to implement, but also inconvenient to
estimate time complexity. Let us introduce new notation. For the convenience of the
reader we follow the notation established in [1].

I = (X1, ..., Xn) (1)

P will denote the polynomial mapping: P : Kn → Kn. We define a polynomial ring
endomorphism σ:

σF (P ) = P (F1, ..., Fn) = P ◦ F ∈ K[X1, ..., Xn] (2)

1 To see more information about Sage see [9].
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Using the notation given above we can write steps of the algorithm, assuming that P
is a polynomial map instead of a polynomial.

P0 = I

P1 = σF (P0)− P0

P2 = σF (P1)− P1 = σF (σF (P0)− P0)− (σF (P0)− P0)

= σF (σF (P0))− σF (P0)− σF (P0) + P0

= σ2
F (P0)− 2σ(P0) + P0

P3 = σF (P2)− P2 = σF
(
σ2
F (P0)− 2σ(P0) + P0

)
−
(
σ2
F (P0)− 2σ(P0) + P0

)

= σ3
F (P0)− 2σ2

F (P0) + σ(P0)− σ2
F (P0) + 2σ(P0)− P0

= σ3
F (P0)− 3σ2

F (P0) + 3σ(P0)− P0

...

Pk =

k∑

i=0

(
k

i

)
(−1)iσk−iF (P0)

We have an exact formula for the k-th polynomial. To compute the k-th polynomial
we need to:

1. compute all Newton symbols
(
k
i

)
for i = 0, ..., k

2. compute all compositions σF (P0), σ2
F (P0), ..., σkF (P0)

Remark: Coefficients in formula for kth polynomial are elements in kth row of Pascal
Triangle. Hence, the set of polynomial automorphisms, such that are inverted by the
inversion algorithm, are called Pascal Finite.

3. How computer remembers multivariate polynomials?

If we want to estimate time complexity of our algorithm, we need to know how a poly-
nomial is stored in memory and what exactly is done during performing algorithm.

We have decided to use Sage software [9] to perform calculations. It is an open
source software, so we can exactly control what is happening when our algorithm is
performed.

Sage can keep multivariate polynomials in two different ways:

tree – a tree of symbolic expressions. The expression is divided into the simplest
operations and the valuation tree is constructed. Each Fi is represented by its
own tree. Hence, operation of σ is in fact very simple. Each node that keeps
variable X1 is replaced by the tree which represents the polynomial Pi for each
i = 1, ..., n. However, answering if the polynomial is constantly equal to 0 is not
so easy. To do so, a transformation of the tree has to be done.
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dictionary – a dictionary is a very popular data structure, widely used by program-
mers. It keeps information as a set of pairs. The first item of the pair is called
key, the second one is called value. To keep the multivariate polynomial in
a dictionary, number and names of variables have to be known before defining
the first polynomial. Each monomial of such a multivariate polynomial is kept
as a separate pair of key and value. The key is a n-tuple of powers of variables
in the monomial, value is coefficient of this monomial. The polynomial is kept
in form which allows us to check if polynomial is equal to 0 very quickly, but
operation σ is a little more complicated. The usage of memory is noticeably
less when we choose to keep a polynomial mapping as a dictionary.

3.1. Example

Let us consider an example of a polynomial mapping: F : C2 → C2

F = (F1, F2),

where

F1(x, y) = x+ a1x
3 + a2x

2y + a3xy
2 + a4y

3,

F2(x, y) = y + b1x
3 + b2x

2y + b3xy
2 + b4y

3.

3.1.1. Tree of symbolic expression

The mapping F can be stored by tree of expression:

sage: a_1, a_2, a_3, a_4 = var(’a_1 a_2 a_3 a_4’)

sage: b_1, b_2, b_3, b_4 = var(’b_1 b_2 b_3 b_4’)

sage: x, y = var(’x y’)

sage: F_1 = x + a_1*x**3 + a_2*x**2*y + a_3*x*y**2 + a_4*y**3; F_1

a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x

sage: F_2 = y + b_1*x**3 + b_2*x**2*y + b_3*x*y**2 + b_4*y**3; F_2

b_1*x^3 + b_2*x^2*y + b_3*x*y^2 + b_4*y^3 + y

There is the built-in function to print an expression in form of the tree: dbgprinttree(),
but its output can be inconvenient to read, because it contains too much unnecessary
information, eg. addresses of pointers in the memory. Using the simple recursive
function we can do the same in much more readable form:

def get_value(root):

if root.operator() is None:

return root

else:
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a,b = var(’a b’)

nops = len(root.operands())

if root.operator() == (a+b).operator():

return ’addtition, nops = {0}’.format(nops)

elif root.operator() == (a*b).operator():

return ’multiplication, nops = {0}’.format(nops)

else:

return ’power’

def print_tree(root, prefix = ’+’):

print prefix,get_value(root)

for o in root.operands():

print_tree(o, ’| ’ + prefix)

Output for F1:

+ addtition, nops = 5

| + multiplication, nops = 2

| | + a_1

| | + power

| | | + x

| | | + 3

| + multiplication, nops = 3

| | + a_2

| | + power

| | | + x

| | | + 2

| | + y

| + multiplication, nops = 3

| | + a_3

| | + x

| | + power

| | | + y

| | | + 2

| + multiplication, nops = 2

| | + a_4

| | + power

| | | + y

| | | + 3

| + x

Output for F2:

+ addtition, nops = 5

| + multiplication, nops = 2

| | + b_1

| | + power

| | | + x

| | | + 3
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| + multiplication, nops = 3

| | + b_2

| | + power

| | | + x

| | | + 2

| | + y

| + multiplication, nops = 3

| | + b_3

| | + x

| | + power

| | | + y

| | | + 2

| + multiplication, nops = 2

| | + b_4

| | + power

| | | + y

| | | + 3

| + y

Using Sage we can obtain σF (F1):

sage: sigma_F_1 = F_1.substitute({x: F_1, y: F_2})

sage: sigma_F_1

(a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x)^3*a_1 +

(a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x)^2*

(b_1*x^3 + b_2*x^2*y + b_3*x*y^2 + b_4*y^3 + x)*a_2

+ (a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x)*

(b_1*x^3 + b_2*x^2*y + b_3*x*y^2 + b_4*y^3 + x)^2*a_3 +

(b_1*x^3 + b_2*x^2*y + b_3*x*y^2 + b_4*y^3 + x)^3*a_4 +

a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x

The tree for σF (F1):

+ addtition, nops = 9

| + multiplication, nops = 2

| | + power

| | | + addtition, nops = 5

| | | | + multiplication, nops = 2

| | | | | + a_1

| | | | | + power

| | | | | | + x

| | | | | | + 3

| | | | + multiplication, nops = 3

| | | | | + a_2

| | | | | + power

| | | | | | + x

| | | | | | + 2

| | | | | + y

| | | | + multiplication, nops = 3
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| | | | | + a_3

| | | | | + x

| | | | | + power

| | | | | | + y

| | | | | | + 2

| | | | + multiplication, nops = 2

| | | | | + a_4

| | | | | + power

| | | | | | + y

| | | | | | + 3

| | | | + x

| | | + 3

| | + a_1

......

As we said before, it is easy to count σF in that way – some nodes are replaced by
trees. However, as we can see – the size of the tree raises rapidly – reduction of some
similar parts or determining if the expression is equal to zero is complicated. There
is the operation expand which transforms the tree to form:

+ addtition, nops = 210

| + multiplication, nops = 2

| | + power

| | | + a_1

| | | + 4

| | + power

| | | + x

| | | + 9

| + multiplication, nops = 4

| | + power

| | | + a_1

| | | + 2

| | + a_2

| | + b_1

| | + power

| | | + x

| | | + 9

| + multiplication, nops = 4

| | + a_1

| | + a_3

| | + power

| | | + b_1

| | | + 2

| | + power

| | | + x

| | | + 9

........
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After the expand operation, we have sum of 210 monomials and we conclude that the
tree is much simpler.

3.1.2. Dictionary of powers

The documentation of the function expand says:

Note: If you want to compute the expanded form of a polynomial

arithmetic operation quickly and the coefficients of the polynomial

all lie in some ring, e.g., the integers, it is vastly faster to

create a polynomial ring and do the arithmetic there.

We will do that indeed.

sage: a_1, a_2, a_3, a_4 = var(’a_1 a_2 a_3 a_4’)

sage: b_1, b_2, b_3, b_4 = var(’b_1 b_2 b_3 b_4’)

sage: R.<x,y> = PolynomialRing(SR, 2)

sage: F_1 = x + a_1*x**3 + a_2*x**2*y + a_3*x*y**2 + a_4*y**3; F_1

a_1*x^3 + a_2*x^2*y + a_3*x*y^2 + a_4*y^3 + x

sage: F_2 = y + b_1*x**3 + b_2*x**2*y + b_3*x*y**2 + b_4*y**3; F_2

b_1*x^3 + b_2*x^2*y + b_3*x*y^2 + b_4*y^3 + y

Polynomials are stored in memory as dictionaries:

sage: F_1.dict()

{(0, 3): a_4, (1, 0): 1, (1, 2): a_3, (2, 1): a_2, (3, 0): a_1}

sage: F_2.dict()

{(0, 1): 1, (0, 3): b_4, (1, 2): b_3, (2, 1): b_2, (3, 0): b_1}

Counting σF is a little bit more complicated when we keep a polynomial as a dictio-
nary, because a multiplying of polynomials needs to be perform, but the multiplication
is a simple operation. The best form of a polynomial for estimating the complexity
is a sum of monomials. This form (a sum of monomials) is also more convenient for
saving memory and execution time.

sigma_F_1 = F_1(F_1,F_2)

sage: sigma_F_1.dict()

{(0, 3): 2*a_4,

(0, 5): a_3*a_4 + 3*a_4*b_4,

(0, 7): a_2*a_4^2 + 2*a_3*a_4*b_4 + 3*a_4*b_4^2,

(0, 9): a_1*a_4^3 + a_2*a_4^2*b_4 + a_3*a_4*b_4^2 + a_4*b_4^3,

(1, 0): 1,

(1, 2): 2*a_3,

(1, 4): (a_3 + 2*b_4)*a_3 + 2*a_2*a_4 + 3*a_4*b_3,

......
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4. Complexity estimation

In this section we will define the complexity, just like Winkler did in [10]. After that
we will present two well known forms of polynomial maps. Later we will define the
simplest operations performed by the algorithm. Then we will estimate complexity
of our algorithm. Question ”how long the program works for specified input” is very
natural, and estimating computational complexity can answer this question.

4.1. Definitions

Definition 6 (Definition 1.5.1 in [10]) Let A be an algorithm whose set of inputs is
a set X. Let P = {Xj}j be partition of the set of inputs, such that. Then:

t−A(j) := min{tA(x) : x ∈ Xj} denotes minimum time complexity function2 of
A

t+A(j) := max{tA(x) : x ∈ Xj} denotes maximum time complexity function3 of
A

t∗A(j) :=
∑
x∈Xj

tA(x)/#Xj denotes average time complexity function4 of A

where tA denotes the number of the basic steps performed by computer during execu-
tion of the algorithm A.

We will use maximum time complexity function, because we would like to know
how many basic operations have to be performed in the most pessimistic situation.
When we consider the complexity, it is very convenient to use notation ’great O’:

Definition 7 (Definition 1.5.2 in [10]) Let f and g be functions from a given set S
to set R+.

f ∈ O(g) :⇔ ∃c∀s∈S f(s) ≤ c · g(s)

Lemma 8 (Lemma 1.5.1 in [10]) Let f, g S → R+. If f(s) ≤ c · g(s) for c ∈ R+ and
for all but a finite number of s ∈ S then f ∈ O(g)

Lemma 9 (Lemma 1.5.1 in [10]) Let f, g S → R+. If f ∈ O(g), then g + f ∈ O(g)
and g ∈ O(g + f)

In [11] van der Essen described a very significant result which was developed
independently by Aleksandr Yagzhev [12] and Hyman Bass [13]. Their successfully
reduced the Jacobian Conjecture. This reduction is known as the form of Bass because
Yagzhev published his article in Russian, so anyone outside of Russia did not hear
about this paper. According to their articles it is enough to prove the Jacobian
Conjecture for polynomial mappings F = (F1, ..., Fn), where Fi = Xi + Hi for each

2 or minimum computing time function
3 or maximum computing time function
4 or average computing time function
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i ∈ {1, ..., n}, where Hi is a homogeneous polynomial of degree three in variables
X1, ..., Xn.

Another significant result described by van den Essen was published by Ludwik
Drużkowski [14]. He stated and proved, that the hypothesis would be proved in
general case if it was proved for the polynomial mappings F = (F1, ..., Fn), where
Fi = Xi +H3

i for each i ∈ {1, ..., n}, where Hi is a linear form in variables X1, ..., Xn.
Drużkowski has used notation:

F (X̄) = X̄ +
(
AX̄

)∗3
,

where A is a matrix of coefficients of linear forms and V ∗3 means rising to the third
power each element separately.

In obvious way n determines the size of the input. For the given n the maximum
number of monomials in a polynomial map in a Drużkowski form is smaller than the
maximum number of monomials in a polynomial map in a Bass form. We choose the
Bass form, since we want to count maximum time complexity function, we would like
to consider as many monomials in a polynomial map as possible. Bass form is more
general, so we will focus on that form.

If we have a polynomial map in the Bass form defined by n polynomials in n-
variable, each of these polynomials has one monomial of degree one, and at most(
n+2
3

)
monomials5 of degree three.

We will use dictionary form during our calculations.

4.2. The basic operation

Bass form has two kinds of monomials:

1. Monomial of degree 1,

2. Monomial of degree 3.

We can perform σF separately for each monomial of the polynomial map.
Let us denote the number of monomials in the polynomial map F = (F1, ..., Fn)

by
#F,

where each Fi is n-variable polynomial.
If we want to perform operation σF (M1) where M1 = Xi is a monomial of degree

one, we just need to create #Fi entries in the result dictionary. The complexity
of putting the pair of key and value to the dictionary is constant – we will say the
complexity is O(1).

If we want to perform operation σF (M3) where M3 is monomial of degree three,
we need to multiply coefficient of M3 and three polynomials (let us denote them by
Fi, Fj and Fk). So, we need to perform at most #Fi ·#Fj ·#Fk blocks of operations:

5 Each monomial defined as multiplication of three-element-combination with repetitions of n-
element set of variables
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� Check if resulting key exists in resulting dictionary

� If it exists:

– Add a new value to the old one

� If it does not exist:

– Create new (key, value) pair in the resulting dictionary.

Each new value is a result of multiplication of 4 coefficients of polynomial
Let us sum up the basic operation used by our algorithm:

� Creating the new entry in the dictionary

� Checking if the dictionary has specified key

� Adding two coefficients of polynomials

� Multiplying at least two coefficients of polynomial

We can assume each operation can be performed in the constant time. We need
to know how many of these operations should be performed during counting σF (F )
(depending on size of polynomial map F ).

4.3. Complexity of σkF (X)

Firstly, we are going to estimate the time complexity of the calculation σF (F ) de-
pending on the size of the polynomial map F . As we said before, the operation σF
for the monomial of degree one M1 = Xi needs as many insertion operations as many
monomials Fi has.

We need to create at most n ·
((
n+2
3

)
+ 1
)
∈ O(n4) new entries in the result

polynomial map which has n ·
(
n+2
3

)
∈ O(n4) monomials of degree 3.

Each polynomial Fi has at most
(
n+2
3

)
monomials of degree three and one mono-

mial Xi of degree one. σF (Xi) takes
(
n+2
3

)
+ 1 operations of insertions. Let’s denote

by Mi monomial of degree 3 for i = 1, ...,
(
n+2
3

)
. Counting σF (Mi) takes

((
n+2
3

)
+ 1
)
·((

n+2
3

)
+ 1
)
·
((
n+2
3

)
+ 1
)

operation of insertion or addition and 3 ·
(
n+2
3

)
·
(
n+2
3

)
·
(
n+2
3

)

multiplication. So to calculate σF (Mi) we need to perform 3 ·
(
n+2
3

)
·
(
n+2
3

)
·
(
n+2
3

)
+((

n+2
3

)
+ 1
)
·
((
n+2
3

)
+ 1
)
·
((
n+2
3

)
+ 1
)

simple operations. Hence, to calculate σF (Fi)
we perform at most

((
n+ 2

3

)
+ 1

)
+

(
n+ 2

3

)
·
[

3 ·
[(
n+ 2

3

)]3
+

[(
n+ 2

3

)
+ 1

]3]
∈ O(n12).

As a result we obtain sum of
(
n+2
3

)
·
[(
n+2
3

)]3
monomials of degree 9 and some mono-

mials of lower degree.
To sum up, after σ2

F (X) we obtain6:

6 where X should be understood as tuple of n variables of the polynomial map F , or in other
words as an identity map
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� O(n13) monomials of the highest degree,

� The degree of polynomials defining the result polynomial map is equal to 9,

� We need to perform O(n13) basic operations.

If we want to use notation O, we can omit monomials of lower degree from previous
step. So we can limit ourselves to consider the situation when we have the polynomial
map with O(n13) monomials of degree 9. Let us denote these monomials by Mi.

To calculate σF (Mi) we need to perform
[(
n+2
3

)
+ 1
]9

insertions to the dictionary

or additions and 9 ·
[(
n+2
3

)]9
multiplications. The complexity of counting σ3

F (X) is
estimated by O(n40). The polynomial map obtained by σ3

F (X) has O(n40) monomials
of degree 27.

Let us summarize our estimations:

k deg(σkF (X)) The amount of monomials of highest degree The complexity
1 3 O(n4) O(n4)
2 9 O(n13) O(n13)
3 27 O(n40) O(n40)
...

...
...

...

As we can see, the complexity of the calculating (understood as the amount of basic
operations) and the amount of monomials of the highest degree are in the same class
of O notation. We can extract recurrent formula for the complexity:

t+1 = O(n4),

t+k = t+k−1 ·
(
O(n3)

)3k−1

.

This recurrence can be formulated as the exact formula (we omit O notation for
readability):

t+1 = n · n3 = n4,

t+2 = n · n3 ·
(
n3
)3

= n13,

t+3 = n · n3 ·
(
n3
)3 ·

(
n3
)9

= n ·
(
n3
)1+3+9

= n40,

t+3 = n · n3 ·
(
n3
)3 ·

(
n3
)9
, ·
(
n3
)27

= n ·
(
n3
)1+3+9+27

= n121,

· · ·
t+k = n ·

(
n3
)1+3+...+3k

= n ·
(
n3
) 3k−1

2 .

We have just proved, the complexity of the counting σkF (X) is in classO

(
n ·
(
n3
) 3k−1

2

)
.
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4.4. Complexity of counting kth step of algorithm

As we presented in section 1, k-th step of our algorithm can be calculated using the
formula:

Pk =
k∑

i=0

(
k

i

)
(−1)iσk−iF (X)

According to the Pascal’s rule which is used to build the Pascal Triangle, we can
calculate the Newton symbol

(
k
i

)
for each i = 0, ..., k in time O(k2). We need to know

each
(
k
i

)
for i = 0, ..., k. Calculating all Newton symbols takes O(k3) time. We also

needs to calculate every σiF (X) for i = 0, ..., k. We use O notation, so we can consider
the complexity of calculating σkF (X) as the complexity of calculating Pk, because
calculating the Newtons symbols and calculating the other σiF (X) for i = 0, ..., k − 1
needs much less basic operations.

5. Verifying if map is polynomial automorphism

According to [1] algorithm does not stop for every polynomial automorphism. If
algorithm stops for a polynomial map F , the polynomial map F is polynomial au-
tomorphism and it is called Pascal finite. As examples show not all polynomial
automorphisms are Pascal finite. Two of those examples can be found in [1]:

F (X1, X2) =
(
X1 +

(
X2 +X3

1

)2
, X2 +X3

1

)

and also:

F (X1, X2, X3, X4) =
(
X1 + pX4, X2 − pX3, X3 +X3

4 , X4

)
,

where p = X1X3 +X2X4.
However, using Theorem 3.1 from [1] we can compute an inverse mapping even if

the algorithm does not stop.

Theorem 10 Let F be a polynomial map of the form:

F1(X1, ..., Xn) = X1 +H1(X1, ..., Xn),

...

Fn(X1, ..., Xn) = Xn +Hn(X1, ..., Xn),

where Hi(X1, ..., Xn) is a polynomial in X1, ..., Xn of degree Di and lower degree di,
with di ≥ 2 for i = 1, ..., n, such that the determinant of the Jacobi matrix of the
mapping F is equal to 1. Let d = min di and D = maxDi. The following conditions
are equivalent:
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1. F is invertible

2. For i = 1, ..., n and m =
⌊
Dn−1−d
d−1 + 1

⌋
+ 1 we have

Σm−1j=0 (−1)jP ij (X) = Gi(X) +Rim(X).

Where Gi(X) is a polynomial of degree ≤ Dn−1, and Rim(X) is a polynomial
satisfying Rim(X) = (−1)m+1P im(X)

Moreover the inverse G of F is given by:

Gi(Y1, ..., Yn) = Σm−1l=0 (−1)lP̂ il (Y1, ..., Yn),

where P̂ il is the sum of homogeneous summands of P il of degree ≤ 2 and m is an

integer > Dn−1−di
d−1 + 1

Using theorem given above we are able to estimate the computational complexity
of checking if a given polynomial mapping F is not Pasal finite polynomial automr-
phism. The complexity of these calculations is estimated by

O

(
n−

1
2+

1
2 ·3

1+b 1
6
·3n+1

2c
)
. (3)

6. Conclusions

The estimated complexity seems to be very big, but this is the estimation of the max-
imum time complexity function. In fact, the complexity is usually much smaller and
the algorithm can be used in practice. According to [6] the worst-case computational
complexity of Groebner basis algorithm is double exponential, but this method can
be used for special cases in practice. We did not compare those two methods. In my
opinion the inversion algorithm is much simpler then the Buchberger algorithm.

Another way to inverse polynomial mappings is the Taylor Series.The inversion
algorithm has a very important advantage over the Taylor series – it does not perform
any division, hence it can be used to study polynomial mappings with coefficients in
finite fields.

In spite of big complexity of a pessimistic computational complexity, the inversion
algorithm is very useful, and can be used for many examples with coefficients in
various fields and even algebras with nilpotent elements.
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