FAQ

Screening method for the analysis of blood and urine for the presence of naturally occurring toxic compounds from mushrooms (fungi) using the LC-MS method

Publication date: 29.03.2022

Problems of Forensic Sciences, 2021, 126-127, pp. 137 - 151

https://doi.org/10.4467/12307483PFS.20.008.15448

Authors

,
Bartłomiej Feigel
Institute of Forensic Research, Kraków, Poland
All publications →
,
Dariusz Zuba
Institute of Forensic Research, Kraków, Poland
https://orcid.org/0000-0001-5133-1756 Orcid
All publications →
Wojciech Lechowicz
Institute of Forensic Research, Kraków, Poland
https://orcid.org/0000-0002-5794-0373 Orcid
All publications →

Titles

Screening method for the analysis of blood and urine for the presence of naturally occurring toxic compounds from mushrooms (fungi) using the LC-MS method

Abstract

Analysis of biological material collected during autopsies and even from living humans for the presence of amanitins and other fungal toxins remains a challenge in forensic toxicology. A qualitative method for the detection of α-amanitin, β-amanitin, γ-amanitin, muscarine, and psilocin in blood and urine has been developed. To achieve this goal, solid phase extraction HLB 3cc 60mg columns were used. Blood and urine samples were purified with water and aqueous methanol solution, and then extracted with acetonitrile. An LC/QTOF system equipped with a C18 column was applied to identify the analytes. Acetonitrile and water with formic acid were utilized as mobile phases. The developed method was validated. The detection limits for α-amanitin, β-amanitin, γ-amanitin, muscarine and psilocin are, respectively, 1.4 ng/ml, 0.3 ng/ml, 1.2 ng/ml, 1.8 ng/ml, and 0.3 ng/ml in blood, and 1.5 ng/ml, 2.1 ng/ml, 1.5 ng/ml, 1.6 ng/ml, and 1.1 ng/ml in urine. The developed method allows for efficient, qualitative identification of all the above-mentioned compounds in a toxicological laboratory.

References

Download references
1. Abbott, N. L., Hill, K. L., Garrett, A., Carter, M. D., Hamelin, E. I., Johnson, R. C. (2018). Detection of α-, β-, and γ-amanitin in urine by LC-MS/MS using 15N10-α-amanitin as the internal standard. Toxicon, 52, 71–77.
2. ANSI/ASB Standard 036. First edition (2019). Standard Practices for Method Validation in Forensic Toxicology.
3. Belliardo, F., Massano, G. (1983). Determination of α-amanitin in serum by HPLC. Journal of Liquid Chromatography, 6(3), 551–558.
4. Bojko, P. (2014). Psylocybina. Retrieved March 19, 2020 from http://knmn.us.edu.pl/teksty/nauka/386--psylocybina.
5. Bresinsky, A. (1990). A colour atlas of poisonous fungi: A handbook for pharmacists, doctors, and biologists. London: Wolfe Publishing.
6. Burda, P. (1998). Zatrucia ostre grzybami i roślinami wyższymi. Warszawa: PWN.
7. Burda, P., Ciszowski, K. (2009). Grzyby trujące. (In) J. Pach (ed.), Zarys toksykologii klinicznej (pp. 545–574). Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
8. Catalfomo, P., Eugster, C. H. (1970). Muscarine and muscarine isomers in selected inocybe species. Helvetica, 53(4), 848–851.
9. Ciszowski, K. (2020). Trucizny grzybowe mające znaczenie w Polsce. (in) K. Jurowski, W. Piekoszewski (eds.), Toksykologia II (pp. 93–103). Warszawa: Państwowy Zakład Wydawnictw Lekarskich.
10. Dydak, K., Śliwińska-Mossoń, M., Milnerowicz, H. (2015). Psylocibin – public avilable psychodysleptic. Postępy Higieny i Medycyny Doświadczalnej, 69, 986–995.
11. Faulstich, H., Talas, A., Wellhöner, H. H. (1985). Toxicokinetics of labeled amatoxins in the dog. Archives of Toxicology, 56, 190–194.
12. Feng, L., Tan, L., Li, H., Xu, Z., Shen, G., Tang, Y. (2015). Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens Bioelectron, 69, 265–271.
13. Filigenzi, M. S., Poppenga, R. H., Tiwary, A. K. (2007). Determination of alpha-amanitin in serum and liver by multistage linear ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 55(8), 2784–2790.
14. Geschwinde, T. (2003). Marktformen und Wirkungsweisen. Berlin: Springer.
15. Ginterová, P., Sokolová, B., Ondra, P., Znaleziona, J., Petr, J., Ševčík, J., Maier,V. (2014). Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry. Talanta, 125, 242–247.
16. Główny Inspektor Sanitarny. Raport stanu sanitarnego kraju 2010–2018. Retrieved January 11, 2020 from https://www.gov.pl/.
17. Gonmori, K., Fujita, H., Yokoyama, K., Watanabe, K., Suzuki, O. (2011). Mushroom toxins: A forensic toxicological review. Forensic Toxicology, 29, 85–94.
18. Hall, I., Stephenson, S., Buchanan, P., Yun, W., Cole, A. (2003). Edible and poisonous mushrooms of the world. Portland: Timber Press.
19. Hasler, F., Bourquin, D., Brenneisen, R., Bär, T., Vollenweider, F. X. (1996). Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psylocybin in man. Pharmaceutica Acta Helvetiae, 72(3), 175–184.
20. Hasler, F., Bourquin, D., Brenneisen, R., Vollenweider, F. X. (2002). Renal excretion profiles of psilocin following oral administration of psilocybin: A controlled study in man. Journal of Pharmaceutical and Biomedical Analysis, 30(2), 331–339.
21. Hofman, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., Petrzilka, T. H., Troxler, F. (1959). Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica, 42(5), 1557–1572.
21. Horita, A., Weber, L. J. (1961). The enzymic dephosphorylation and oxidation of psilocybin and pscilocin by mammalian tissue homogenates. Biochemical Pharmacology, 7(1), 47–54.
22. Jaeger, A., Jehl, F., Flesch, F., Sauder, P., Kopferschmitt, J. (1993). Kinetics of amatoxins in human poisoning: therapeutic implications. Journal of Toxicology and Environmental Health, 31(1), 63–80.
23. Jasicka-Misiak, i., Młynarz, P., Kafarski, P. (2006). Identyfikacja grzybów halucynogennych ze wskazaniem najpowszechniej stosowanych metod oznaczania substancji halucynogennych z grzybów we krwi. Retrieved March 19, 2020 from http://www.biotech.dczt.wroc.pl/opracowania_merytoryczne.xml.
24. Jehl, F., Gallion, c., Brickel, P., Jaeger, A., Flesch, F., Minck, R. (1985). Determination of a-amanitin and p-amanitin in human biological fluids by high-performance liquid chromatography. Analytical Biochemistry, 149(1), 35–42.
25. Kamata, T., Nishikawa, M., Katagi, M., Tsuchihashi, H. (2006). Direct detection of serum psilocin glucuronide by LC/MS and LC/MS/MS: Time-courses of total and free (unconjugated) psilocin concentrations in serum specimens of a “magic mushroom” user. Forensic Toxicology, 24, 36–40.
26. Kamata, T., Nishikawa, M., Katagi, M., Tsuchihashi, H. (2003). Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 796(2), 421–427.
27. Lampe, F. K. (2018). Mushroom poisoning. (in) M. Rechcigl (ed.), Handbook of naturally occurring food toxicants (pp. 193–213). London: CRC Press.
28. Leite, M., Freitas, A., Azul, A. M., Barbosa, J., Costa, S., Ramos, F. (2013). Development, optimization and application of an analytical methodology by ultraperformance liquid chromatography-tandem mass spectrometry for determination of amanitins in urine and liver samples. Analytica Chimica Acta, 799, 77–87.
29. Lindenblatt, H., Krämer, E., Holzmann-Erens, P., Gouzoulis-Mayfrank, E., Kovar, K. A. (1998). Quantitation of psilocin in human plasma by high-performance liquid chromatography and electrochemical detection: comparison of liquid-liquid extraction with automated on-line solid-phase extraction. Journal of Chromatography B: Biomedical Sciences and Applications, 708(2), 255–263.
30. Magdalan, J. (2010). Mechanizmy hepatotoksyczności α-amanityny oraz porównanie skuteczności odtrutek stosowanych w terapii zatrućmuchomorem sromotnikowym – przegląd badańna hodowlach komórkowych. Postępy Biologii Komórki, 37(3), 525–537.
31. Malone, M. H., Brown, J. K., Stuntz, D. E., Tayler, V. (1962). Paper chromatographic determination of muscarine in inocybe species. Journal of Pharmaceutical Sciences, 51(9), 853–856.
32. Marciniak, B., Ferenc, T., Kusowska, J., Ciećwierz, J., Kowalczyk, E. (2010). zatrucia wybranymi grzybami o działaniu neurotopowym i halucynogennym. Medycyna Pracy, 61, 583–595.
33. Martin, R., Schürenkamp, J., Pfeiffer, H., Köhler, H. (2012). A validated method for quantitation of psilocin in plasma by LC-MS/MS and study of stability. Journal of Legal Medicine, 126(6), 845–849.
34. Maurer, H. H, Schmitt, C. J, Weber, A. A, Kraemer, T. (2000). Validated electrospray liquid chromatographic -mass spectrometric assay for the determination of the mushroom toxins alpha- and beta-amanitin in urine after immunoaffinity extraction. Journal of Chromatography B: Biomedical Sciences and Applications, 748(11), 125–135.
35. Merová, B., Ondra, P., Staňková, M., Soural, M., Stříbrný, J., Hebká, L., Lemr, K. (2011). Determination of muscarine in human urine by electrospray liquid chromatographic-mass spectrometric. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(25), 2549–2553.
36. Oslon, K. (2011). Poisonig and drug overdose, Sixth edition. New York: Mcgraw-Hill Medical.
37. Sticht, G., Käferstein, H. (2000). Detection of psilocin in body fluids. Forensic Science International, 113, 403–407.
38. Tanahashi, M., Kaneko, R., Hirata, Y., Hamajima, M., Arinobu, T., Ogawa, T., Ishii, A. (2010). Simple analysis of α-amanitin and β-amanitin in human plasma by liquid chromatography-mass spectrometry. Forensic Toxicology, 28, 110–114.
39. Walton, J. (2018). The cyclic peptide toxins of amanitina and other poisonous muschrooms. East Lansing: Springer.

Information

Information: Problems of Forensic Sciences, 2021, 126-127, pp. 137 - 151

Article type: Original article

Titles:

Polish:

Screening method for the analysis of blood and urine for the presence of naturally occurring toxic compounds from mushrooms (fungi) using the LC-MS method

English:

Screening method for the analysis of blood and urine for the presence of naturally occurring toxic compounds from mushrooms (fungi) using the LC-MS method

Authors

Institute of Forensic Research, Kraków, Poland

https://orcid.org/0000-0001-5133-1756

Dariusz Zuba
Institute of Forensic Research, Kraków, Poland
https://orcid.org/0000-0001-5133-1756 Orcid
All publications →

Institute of Forensic Research, Kraków, Poland

https://orcid.org/0000-0002-5794-0373

Wojciech Lechowicz
Institute of Forensic Research, Kraków, Poland
https://orcid.org/0000-0002-5794-0373 Orcid
All publications →

Institute of Forensic Research, Kraków, Poland

Published at: 29.03.2022

Received at: 07.06.2021

Accepted at: 02.11.2021

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Bartłomiej Feigel (Author) - 33%
Dariusz Zuba (Author) - 33%
Wojciech Lechowicz (Author) - 34%

Article corrections:

-

Publication languages:

English, Polish