Analysis of land use and land cover maps suitability for modeling population density of urban areas – redistribution to new spatial units based on CLC and UA databases
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEAnalysis of land use and land cover maps suitability for modeling population density of urban areas – redistribution to new spatial units based on CLC and UA databases
Publication date: 29.10.2018
Geoinformatica Polonica, 2018, Vol. 17 (2018), pp. 53 - 64
https://doi.org/10.4467/21995923GP.18.005.9162Authors
Analysis of land use and land cover maps suitability for modeling population density of urban areas – redistribution to new spatial units based on CLC and UA databases
The series of articles contains a comparison of the possibilities of using data from three sources for mapping people, with different spatial, thematic and time accuracy. These are data from Corine Land Cover (CLC) and Urban Atlas (UA) projects and the result of object classification (OBIA) of RapidEye data. The information on the existence of building zone included on the land use and land cover maps (LULC) constituted a limiting variable in the dasymetric method of population mapping. Categories related to building types allowed for the introduction of variable relationships, diversifying population density. These treatments enabled multi-variant development of maps of spatial population occurrence at a higher level than the original census units.
The experiment was carried out in the area of Krakow. Statistical data from 141 urban units (u.u.) of the city were used. Generation of population maps was carried out in several variants. Divisions of buildings were made depending on its characteristicsand functions. The results of population conversion were analyzed on Central Statistical Office (hereafter referred as CSO, in Polish: GUS) data in a kilometer grid and on a specially prepared map of the population including a part of Krakow. The applied double verification allowed to rank the obtained population maps and provide border spatial accuracy of their cellular representation.
The first part of the cycle presents the state of knowledge about population mapping and population conversion using the dasymetric method. The area of research is described. Spatial and statistical data used in the research were characterized. Works related to population conversion based on CLC and UA were presented. Six maps of the population distribution of Krakow were obtained. A multi-variant process of recalculating and setting weights for various types of buildings is described by providing for urban units the values of RMSE and MAPE. Population using the surface-weight method based on UA data was considered the best (MAPE 66%, RMSE 3442 people/u.u.). On CLC data, these errors were: MAPE 168%, RMSE 5690 people/u.u.
In the subsequent parts of the cycle, the population conversion will be presented using object-oriented classification. The methodology for the verification of results will be described based on a photointepretation map of the population and the GUS perimeter grid. A discussion will be conducted related to the use of RMSE and MAPE measures. The ranking of methods and recommendations improving the results of population redistribution based on CLC, UA and OBIA will be given.
Azar, D., Graesser, J., Engstrom, R., Comenetz, J., Leddy JR, R.M., Schechtman, N.G. and Andrews, T. (2010). Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces in Haiti. International Journal of Remote Sensing, 31 (21): 5635–5655, doi:10.1080/01431161.2010.496799
Baki llah, M., Liang, S., Mobasheri, A., Arsanjani J.J. and Zipf A. (2014). Fine-resolution population mapping using Open- StreetMap points-of-interest, International Journal of Geographical Information Science, vol. 28(9):1940–1963, doi: 10.1080/13658816.2014.909045
Bielecka E., Kuczyk A., Witkowska E. (2005). Modelowanie powierzchni statystycznej przedstawiającej gęstość zaludnienia w Polsce przy pomocy metody dozymetrycznej. Polskie Towarzystwo Informacji Przestrzennej, Roczniki Geomatyki, T. III, Z. 2, 9–16
Borkowski A., Głowienka E., Hermanowska B., Kwiatkowska-Malina J., Kwolek M., Michałowska K., Mikrut S., Pękala A., Pirowski T., Zabrzeska-Gąsiorek B., (red. Głowienka E.), 2015. GIS i teledetekcja w monitoringu środowiska. Rzeszów, WSIE. http://wsie.edu.pl/wp-content/uploads/2014/06/GIS-srodek.pdf, ISBN: 978-83-60507-27-8
Całka B., Bielecka E., Zdunkiewicz K. (2016). Redistribution population data across a regular spatial grid according to buildings characteristics, Geodesy and Cartography;| Vol. 65, no. 2, pp. 149–162
Cockx K., Canters F. (2015). Incorporating spatial non-stationarity to improve dasymetric mapping of population. Applied Geography, Vol. 63, s. 220–230
Eicher, C.L., Brewer C.A. (2001). Dasymetric Mapping and Areal Interpolation: Implementation and Evaluation. Cartography and Geographic Information Science, Vol. 28, No. 2, April, pp. 125–138(14)
Gallego F.J., Peedell S. (2001). Using CORINE Land Cover to map population density. Towards agri-environmental indicators. EEA Topic report 6/2001, 94–105
Goleń i Ostrowski (1994). Metoda dazymetryczna – rys historyczny, Polski Przegląd Kartograficzny 26(1): 3–16
Gregory, I.N. (2002). The accuracy of areal interpretation techniques: standardizing 19th and 20th century census data to allow long-term comparisons. Computer, Environment and Urban Systems 26: s. 293–314.
Harvey J. (2002). Estimating Census District Populations from Satellite Imagery: Some Approaches and Limitation, International Journal of Remote Sensing 23(10):2071–2095, May
Horanont, T. and Shibasaki, R. (2010). Estimate ambient population density: discovering the current fl ow of the city. Available on line: https://www.academia.edu/2004297/estimate_ambient_population_density_discovering_the_current_flow_of_the_city
Hościło A., Tomaszewska M. (2014). CORINE Land Cover 2012–4th CLC inventory completed in Poland. Geoinformation Issues, Vol. 6, No. 1 (6), s. 49–58
Kruszyńska A., Wendel I. (2001). Dzielnice Krakowa, Urząd Miasta Krakowa, Kancelaria Rady Miasta i Dzielnic Krakowa, Kraków, s. 42
Kucharczyk M. (2012). Analiza cech podmiejskiej zabudowy mieszkaniowej na przykładzie inwestycji deweloperskich zrealizowanych w okolicy Krakowa. Politechnika Krakowska, Czasopismo Techniczne. Architektura, z. 29
Lin J., Cromley R.G. (2015). Evaluating geo-located Twitter data as a control layer for areal interpolation of population. Applied Geography, Vol. 58, s. 41–47
Maantay J.A., Maroko A.R., Herrmann Ch. (2007). Mapping Population Distribution in the Urban Environment: The Cadastral-based Expert Dasymetric System (CEDS). Cartography and Geographic Information Science
Mapping Guide for European Urban Atlas, 2011; http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-methodology
Mennis J. (2003). Generating Surface Models of Population Using Dasymetric Mapping. The Professional Geographer, Vol. 55, No. 1
Mennis, J., Hultgren, T. (2006). Intelligent dasymetric mapping and its application to area interpolation. Cartography and Geographic Information Science, 33(3): 179–194
Pirowski T., Drzewiecki W. (2012). Mapa gęstości zaludnienia Krakowa, propozycja metodyki opracowania oraz przykładowe zastosowania. Roczniki Geomatyki, t. 10, z. 3
Pirowski T., Pomietłowska J. (2017). Distribution of Krakow’s Population by Dasymetric Modeling Method Using Urban Atlas and Publicly Available Statistical Data, Geomatics and Environmental Engineering, vol. 11/4, 83–95
Robinson A.H., Sale R.D., Morrison J.L. Muehrcke P.C. (1998). Podstawy Kartografii, PWN, Warszawa
Sleeter, R., Wood N. (2006). Estimating daytime and nighttime population density for coastal communites in Oregon: Urban and Regional Information Systems Association. Annual Conference, Proceedings, Vancouver, BC, September 26–29
Smith, A., Newing, A., Quinn, N., Martin, D., Cockings, S. and Neal, J. (2015). Assessing the Impact of Seasonal Population Fluctuation on Regional Flood Risk Management. ISPRS Int. J. Geo-Inf. 2015, 4:1118–1141, DOI:10.3390/ijgi4031118
Sridharan, H. and Qiu, F. (2013). A Spatially Disaggregated Areal Interpolation Model Using Light Detection and Ranging-Derived Building Volumes. Geographical Analysis, 45:238–258
Tapp A.F. (2010). Areal Interpolation and Dasymetric Mapping Methods Using Local Ancillary Data Sources. Cartography and Geographic Information Science, Vol. 37, No. 3
Tobler R.T. (1979). Smooth pycnophylactic interpolation for geographic regions. Journal of The American Statistical Association 74, 519–530
Urban Atlas – delivery of land use/cover maps of major European Urban Agglomerations – Final Report (V 2.0), 2011; http://ec.europa.eu/regional_policy/sources/tender/pdf/2012066/urban_atlas_final_report_112011.pdf
Web sites StatKrak prowadzony przez Wydział Strategii i Rozwoju Miasta Urząd Miasta Krakowa, Referat Analiz i Prognoz Rozwoju Miasta; www.msip2.um.krakow.pl/statkrak/, dostęp: 22.11.2016
http://www.igik.edu.pl/pl/corine-projekt (dostęp: 26.05.2017)
Wu, C. and Murray, A.T. (2005). A cokriging method for estimating population density in urban areas. Computers, Environment and Urban Systems, 29 (5), 558–579, doi:10.1016/j.compenvurbsys.2005.01.006
Information: Geoinformatica Polonica, 2018, Vol. 17 (2018), pp. 53 - 64
Article type: Original article
Titles:
Analysis of land use and land cover maps suitability for modeling population density of urban areas – redistribution to new spatial units based on CLC and UA databases
AGH University of Science and Technology in Krakow, Faculty of Mining Surveying and Environmental Engineering
AGH University of Science and Technology in Krakow, Faculty of Mining Surveying and Environmental Engineering
Published at: 29.10.2018
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
English