cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEPublication date: 25.07.2018
Technical Transactions, 2018, Volume 7 Year 2018 (115), pp. 179 - 190
https://doi.org/10.4467/2353737XCT.18.109.8804Authors
Praca dotyczy numerycznego modelowania rozkładu temperatury towarzyszącej pierwszej fazie procesu stopowania tarciowego z mieszaniem materiału. bardzo ważne jest określenie pola temperatury w modyfikowanym materiale w celu identyfikacji obszarów, gdzie właściwości fizyczne materiału ulegają zmianie. Występujący gradient temperatury powoduje obniżenie granicy plastyczności, czego konsekwencją jest umożliwienie plastycznego płynięcia materiału wokół narzędzia mieszającego. Podjęto próbę analizy obrotowo symetrycznego problemu opisanego równaniem typu fouriera z wewnętrznym źródłem ciepła, gdzie generowane ciepło pochodzi jedynie od pracy sił tarcia występujących pomiędzy materiałem bazowym a materiałem narzędzia. rozważany problem skupiał się na analizie procesu wytwarzania kompozytu al-TiC za pomocą technologii fsa. Zdjęcia makrostruktury kompozytu oraz wyniki symulacji numerycznej potwierdzają poprawność zastosowanego modelu matematycznego, a otrzymane pole temperatury nawiązuje do stref właściwych dla procesu fsa.
This work demonstrates the numerical modelling of thermal dispersion accompanying the first stage of the friction stir alloying process. It is very important to recognise the temperature field in the modified workpiece in order to identify the zones where the physical material properties are changing. The temperature gradient leads to a drop of yield strength of the material and, as a consequence, the occurrence of the possibility of plastic flow around the tool. an attempt has been made to analyse the axisymmetric thermal problem described by a fourier equation with an internal heat source in which the heat is derived only from work of frictional forces occurring between the workpiece and the tool material. The example under consideration focuses on the production of an al-TiC composite using fsa technology. macrostructure images of the composite and the simulation results confirm the correctness of the applied mathematical model, where the obtained temperature field corresponds with specific fsa zones.
[1] Salehi M., Farnoush H. and Mohandesi J.A., Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing, Jour. of Mat. and Des., 63(C), 2014, 419–426.
[2] Gandra J., Miranda R., Vilaça P., Velhinho A. and Teixeira J.P., Functionally graded materials produced by friction stir processing, Journal of Materials Processing Tech., 211(11), 2011, 1659–1668.
[3] Miranda R.M., Santos T.G., Gandra J., Lopes N., Silva R.J.C., Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, Journal of Materials Processing Tech., 213(9), 2013, 1609–1615.
[4] Veličković S., Garić S., Stojanović B., Vencl A., Tribological properties of aluminium matrix nanocomposites, Applied Engineering Letters, 1(3), 2016, 72–79.
[5] Bohidar S.K., Sharma R., Mishra P.R., Functionally Graded Materials: A Critical Review, International Journal of Scientific Footprints, 2(4), 2014, 18–29.
[6] Kohli G.S., Singh T., Review of functionally graded materials, Journal of Production Engineering, 18(2), 2015, 1–4.
[7] Udupa G., Rao S.S., Gangadharan K.V., Functionally Graded Composite Materials: An Overview, Procedia Materials Science, 5, 2014, 1291–1299.
[8] Grujicic M., Pandurangan B., Yen C.F., Cheeseman B.A., Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, Journal of Materials Engineering and Performance, 21(11), 2011, 2207–2217.
[9] Sanjeev N.K., Malik V., Hebbar H.S., Verification of Johnson-Cook material model constants of AA2024-T3 for use in finite element simulation of friction stir welding and its utilization in severe plastic deformation process modelling, IJRET, 3(6), 2014, 98–102.
[10] Simar A., Bréchet Y., de Meester B., Denquin A., Pardoen T., Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6, Materials Science & Engineering, 486(1), 2008, 85–95.
[11] Zhang L., Min J., Wang B., Lin J., Li F., Liu J., Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties, Chin. J. Mech. Eng., 29(2), 2016, 357–364.
[12] Nielsen K.L., Pardoen T., Tvergaard V., de Meester B., Simar A., Modelling of plastic flow localisation and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law, International Journal of Solids and Structures, 47(18), 2010, 2359–2370.
[13] Borino G., Fratini L., Parrinello F., Mode I failure modeling of friction stir welding joints, Int. J. Adv. Manuf. Technol., 41(5), 2008, 498–503.
[14] Mishra R.S., Mahoney M.W., Friction Stir Welding and Processing, ASM International, Ohio 2008
[15] Lockwood W.D., Tomaz B., Reynolds A.P., Mechanical response of friction stir welded AA2024: experiment and modeling, Materials Science and Engineering, A323, 2002, 348–353.
[16] Zhang Z.H., Li W.Y., Li J.L., Chao Y.J., Effective predictions of ultimate tensile strength, peak temperature and grain size of friction stir welded AA2024 alloy joints, Int. J. Adv. Manuf. Technol., 73(9), 2014, 1213–1218.
[17] Cho H.H., Kim D.W., Hong S.T., Jeong Y.H., Lee K., Cho Y.G., Kang S.H., Han H.N., Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel, Metal. and Mat. Trans., 46(12), 2015, 6040–6051.
[18] Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Temple-Smith P., Dawes C. J., Improvements relating to friction stir welding, Patent no: 5460317, 1999.
[19] Węglowski M.S., Friction stir processing – State of the art, Archives of Civil and Mechanical Engineering, 18(1), 2017, 114–129.
[20] Lohwasser D., Chen Z., Friction Stir Welding. From basics to applications, CRC, Cambridge 2010
[21] Lockwood W.D., Reynolds A.P., Simulation of the global response of a friction stir weld using local constitutive behavior, Materials Science and Engineering, A339, 2003, 35–42.
[22] He W., Luan B., Xin R., Xu J., Liu Q., A multi-scale model for description of strain localization in friction stir welded magnesium alloy, Computational Materials Science, 104(C), 2015, 162–171.
[23] Yadav D., Bauri R., Effect of friction stir processing on microstructure and mechanical properties of aluminium, Materials Science and Engineering, 539, 2012, 85–92.
[24] Micallef D., Camilleri D., Toumpis A., Galloway A., Arbaoui L., Local Heat Generation and Material Flow in Friction Stir Welding of Mild Steel Assemblies, Journal of Materials: Design and Application, 230(2), 2016, 586–602.
[25] Shi L., Wu C.S. Liu H.J., Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding, Journal of Materials Engineering and Performance, 23(8), 2014, 2918–2929.
[26] Kang S.W., Jang B.S., Kim J.W., A study on heat-flow analysis of friction stir welding on a rotation affected zone, J. Mech. Sci. Technol., 28(9), 2014, 3873–3883.
[27] Moataz A., Friction Stir Welding of aluminium alloys, Lambert, Birmingham, 2007.
[28] Mijajlovic M., Milcic D., Analytical Model for Estimating the Amount of Heat Generated During Friction Stir Welding: Application on Plates Made of Aluminium Alloy 2024 T351, InTech, 11, 2012.
[29] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical recipes in fortran, Cambridge University Press, Cambridge 1993.
Information: Technical Transactions, 2018, Volume 7 Year 2018 (115), pp. 179 - 190
Article type: Original article
Titles:
Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology
Institute of Applied Mechanics, Faculty of Mechanics, Cracow University of Technology
Published at: 25.07.2018
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 1347
Number of downloads: 953