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Abstract
This work demonstrates the numerical modelling of thermal dispersion accompanying the first stage of the 
friction stir alloying process. It is very important to recognise the temperature field in the modified workpiece 
in order to identify the zones where the physical material properties are changing. The temperature gradient 
leads to a  drop of yield strength of the material and, as a  consequence, the occurrence of the possibility 
of plastic flow around the tool. An attempt has been made to analyse the axisymmetric thermal problem 
described by a Fourier equation with an internal heat source in which the heat is derived only from work of 
frictional forces occurring between the workpiece and the tool material. The example under consideration 
focuses on the production of an Al-TiC composite using FSA technology. Macrostructure images of the 
composite and the simulation results confirm the correctness of the applied mathematical model, where the 
obtained temperature field corresponds with specific FSA zones.
Keywords: FSA, temperature field, Al-TiC composite

Streszczenie
Praca dotyczy numerycznego modelowania rozkładu temperatury towarzyszącej pierwszej fazie 
procesu stopowania tarciowego z  mieszaniem materiału. Bardzo ważne jest określenie pola temperatury 
w  modyfikowanym materiale w  celu identyfikacji obszarów, gdzie właściwości fizyczne materiału ulegają 
zmianie. Występujący gradient temperatury powoduje obniżenie granicy plastyczności, czego konsekwencją 
jest umożliwienie plastycznego płynięcia materiału wokół narzędzia mieszającego. Podjęto próbę analizy 
obrotowo symetrycznego problemu opisanego równaniem typu Fouriera z  wewnętrznym źródłem 
ciepła, gdzie generowane ciepło pochodzi jedynie od pracy sił tarcia występujących pomiędzy materiałem 
bazowym a  materiałem narzędzia. Rozważany problem skupiał się na analizie procesu wytwarzania 
kompozytu Al-TiC za pomocą technologii FSA. Zdjęcia makrostruktury kompozytu oraz wyniki symulacji 
numerycznej potwierdzają poprawność zastosowanego modelu matematycznego, a  otrzymane pole 
temperatury nawiązuje do stref właściwych dla procesu FSA.
Słowa kluczowe: FSA, rozkład temperatury, kompozyt Al-TiC
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Nomenclature

cv specific heat α stability coefficient

d diameter of the pin β convection coefficient

D diameter of the shoulder λ thermal conductivity

h height of the pin ρ mass density

r, φ, z cylindrical coordinates θ, θ∞ temperature, ambient temperature

r, R radii of the pin and the shoulder τcont shear yield strength

Q heat ω angular velocity 

t
wsl

time
thickness of the shear layer

Δr, Δt spatial increment and time increment

1.  Introduction

Recently, engineers have been increasingly using innovative materials in modern 
constructions. The properties of these materials are much better than properties of traditional 
materials, such as steel. Examples of this type of material are aluminium matrix composites 
(AMCs) which are reinforced by particles such as TiC, SiC, B4C or Al2O3 [1–4]. These 
composites have many applications, e.g. in the automotive industry, the aerospace industry 
and in the military. They are characterised by their high stiffness and strength to weight ratio. 
They also have high heat resistance and tribological properties. Additionally, in the case of 
cyclic loads, their fatigue properties are high. Very interesting variations of these composites 
are the functionally graded materials which allow their use in extreme environments [5–7]. 
The reason why they are not used more widely is the high production costs of currently 
used technologies. However, some researchers are trying to make these types of composites 
using friction stir processing technology (FSP) and the results of these attempts appear to be 
promising [1–3] (Fig. 1). They observed that the reinforcement particle distribution in the 
aluminium matrix changes gradually through its thickness and there are no particle-poor or 
particle-rich zones in the microstructure [1]. Scientists now wish to optimise this process and 
check if the technology parameters influence the material properties of the modified layer 
with regard to, for example, yield strength, total elongation and micro-hardness. Due to the 
fact that it is a relatively new method of obtaining FGCM (functionally graded composite 
materials), there is no adequate mathematical model which describes its behaviour under 
external loads. Salehi et al. [1] tried to use a simple equation from continuum mechanics to 
estimate the composite yield strength; however, this model fails to consider gradation of this 
property. Generally, regarding composites made using FSP technology, there is a lack of this 
kind of material description. Most of the publications are focussed on modelling behaviour 
of friction stir welded joints using some modifications of the Johnson-Cook material model 
[8, 9], the Voce model [10, 11] or a modified Gurson model [12, 13]; however, neither of 
them have implemented dependence from the process parameters. During the FSP process, 
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the tool affects the workpiece and the parameters (rotation speed and feed rate) determine 
the amount of generated heat energy and the manner of material flow [14]. The material 
behaviour of individual zones in FSP composites is closely related to the microstructures of 
the zones which are determined by influence of the tool [15–17]. Friction stir processing 
is a  variation of a  friction stir welding technology which was developed at the end of the 
twentieth century by Wayne Thomas in the Welding Institute (UK) [18]. As was shown, FSP 
allows the application of the benefits of FSW in different ways e.g. the layer of the porous 
materials can be modified where the microstructure of it is grained [19]. Sometimes when 
the process of manufacturing composites using FSP technology is described, some researches 
use the term ‘friction stir alloying’ (FSA). As is the case with FSW, during FSP/FSA, heat 
energy is generated by two phenomena. Firstly, by friction between the material of the tool 
and the base material, and secondly, by energy dissipation of plastic strain work. Increase of 
temperature causes softening of the workpiece which allows mixing of the materials in the 
case of the manufacturing composite [20]. 

In the present study, 2D heat distribution during the first stage of the FSA process 
in the Al-TiC composite was investigated using the developed model which uses a  non-
stationary Fourier equation. In this analysis, heat is generated only by the first mechanism 
which corresponds with the friction between the tool and the base material. To confirm the 
simulation results, the received temperature field map which accompanies the first stage 
of the FSA process was compared with a  macrostructural image of the composite made 
experimentally with the assumed technological parameters and the same configuration 
of added TiC powder. The results depict that the FSA parameters influence the amount of 
generated heat energy and its dispersion in the workpiece.

2.  Model

Each of the welding techniques have an effect on the local mechanical properties of the 
formed joint [21] which closely correlates with the high temperature which occurs during the 
welding processes and is needed to increase the enthalpy joining materials in order to conduct 

Fig. 1.	 Macrostructural image of the Al-SiC composite from the advancing side and the related 
hardness profiles diagram [2]
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the adhesion phenomenon process. In the case of FSA technology, heat is generated by the 
tool and it is self stabilising [12]. The maximum temperature does not reach the melting point 
of the joined or mixed materials [14]. The first stage of the FSA process consists of penetration 
initiation of the workpiece and short period of time for first dwelling. This is a very important 
stage because during this time, the temperature significantly increases, which allows material 
to flow around the probe. These two phenomena are complex and coupled and affect the 
material microstructure which, as a  consequence, affects the material behaviour under 
external loads [8, 15–17, 22]. The ensuing plastic deformation and its directions are related 
to the tool geometry and the motion of this tool; therefore, the asymmetry in stirred zone is 
an important subject of observation (Fig. 2).

The region modified by FSP has similar microstructural zones to the FSW method. We can 
distinguish between the stir zone – SZ, the heat affected zone – HAZ, the thermo-mechanical 
affected zone – TMAZ and the base material – BM. Micallefet et al. [24] and Shi et al. [25] 
used CFD simulations to predict heat generation and material flow during the FSW process. 
Interesting models were developed by Kang et al. [26], who propose models which include 
only the plastic deformation process as a mechanism of heat energy generation. This article 
focuses only on the frictional mechanism of heat generation, and the plastic deformation of 
the material is not currently considered. At the beginning of the FSP or FSW process study, 
thermal modelling is needed because this step allows the elimination of those parameters 
which can lead to the welding nonconformities like voids. Thus, the quality of the mixed zone 
is dictated by the thermal history of the process and the plastic deformation. 

The tool generally used has two functions: it transforms mechanical energy into heat 
energy and induces the material flow inside the stirring zone. The amount of heat energy 
generated is determined by the influence of the individual active surfaces of the tool: the pin 
tip surface (pt), the pin side surface (ps) and the shoulder tip surface (st) (Fig. 3a). 

Fig. 2.	 Scheme of the FSP process [23]
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	 Q Q Q QT ps pt st� � � 	 (1)

Each of these surfaces generates a certain amount of heat energy; however, the biggest 
contribution to this value is the shoulder, which constitutes around 90% of this energy [20]. 
Moataz [27] presents analytical models for the calculation of heat inputs. A Chao model was 
used in this study.
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Individual values of energy contributors from equation (1) can be calculated by integrals 
(2) [28]. It is assumed that all variables, for example, yield strength (σy) and thermal 
conductivity, are independent from temperature and time. This assumption is not in 
accordance with reality; however, it is sufficient to observe the trends which combine with 
the temperature flow across the workpiece. The opposite assumption was made by Mijajlovic 
and Milic [28] who considered the influence of many parameters on generated heat energy, 
where these parameters are mutually dependent.

In equation (2), ω –  is radial frequency, τcont –  is contact shear stress of the interface 
located between the shear layer of the workpiece and the tool, and is expressed by, 

�
�

cont �
y r
3

,  -  is the radius of analyzed part of the tool. Because the heat energy which is 

generated by probe is relatively small, it can be neglected in the next calculations and the total 
generated heat energy can be described as:

Fig. 3.	 FSW tool: a) individual tool areas which determine the amount of generated heat energy;  
b) real welding tool with conical pin and cut spirals on the pin and the shoulder
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In reality, heat is generated by those surfaces which are in contact with the base material; 
thus, the heat source is heterogeneous because the active surfaces affect the workpiece in 
a nonlinear manner. Additionally, the friction phenomena which occur during this process 
are complex and difficult to model. Some of the material can stick to the tool and some of it 
can slip; the ratio between these two occurrences is difficult to estimate. For simplification, 
the spatial dispersion of the volume intensity heat source was assumed to be:
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where the heat affects a very thin material layer expressed by variable , which describes the 
width of the shear layer.

This definite heat source was used as the excitation in a non-stationary Fourier equation, 
which in case of modelling the first stage of the FSA process, is rotational symmetry.
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3.  Experimental and numerical examples

In the present study, 6082-T6 aluminium alloy sheets (2 mm ×  50 mm ×  110 mm) 
were used as the base material. The configuration used has the best quality of macro- and 
microstructure of the obtained modified layer from a  set of possible FSA strategies. The 
aluminium sheets were separated by titanium carbide powder (with a purity of 98% and an 
average diameter of 44 µm) which served as a reinforcement; the thickness of this layer was 
0.1 mm. The materials were mixed together in order to form a composite (Fig. 4).

The new material was made using FSA technology on a standard milling machine (Fig. 5). 
The rotation speed (Vn) was 560 min-1, the penetration speed (Vp) was 12 mm/min and the 
travelling speed (Vz) was 40 mm/min. The time for the first dwelling was set at 3 seconds. 

Fig. 4.	 Strategy of powder implementation in the FSA process
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The tilt angle of the rotation tool was set at 0º. The tool has a conically shaped threaded probe 
with a root diameter of 8 mm and a length of 5 mm. The shoulder has a diameter of 20 mm 
and milled spiral on its tip (Fig. 3b). The nominal thermo-physical properties of the materials 
used in the simulation are listed in Table 1.

Table 1.	 Physical properties of the tool material, the TiC powder and the aluminium plate 

Material ρ[g/cm2] λ[W/cm·K] cv[ J/g·K]

Tool – Tungsten alloy 19.25 175 0.135

Added phase – TiC powder 4.92 110 0.520

Matrix – Al 6082-T6 2.71 172 0.894

The boundary conditions (Fig. 6) of the numerical simulation were modelled using 
equations corresponding with the boundary conditions of the experimental test; however, 
the analysis refers only to the first stage of the FSA process. The author developed his own 
script in the MATLAB environment which uses the finite difference method based on a fully 
implicit scheme [29].

Fig. 5.	 CNC milling machine used in the FSA process

Fig. 6.	Geometrical scheme and the boundary conditions of the analysed problem  
(von Neumann’s stability coefficients for: tool – α1, added phase – α2 and matrix – α3)
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Used method requires the fulfilment of von Neumann’s stability equation �
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Additionally, the value of the stability coefficient is different for each material used in simulation. 
The rectangle domain was discretised by an element with a nominal length of 0.1 mm. The 
mesh size was 63 × 250 and each point of it has applied the differential equation (6).
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This equation also contains the unknowns of the points which are located outside the 
domain; in this case, the determination of their values requires usage of the appropriate 
boundary condition scheme which consists of combinations of unknowns at internal points 
(see Fig. 6). Each iteration generates a set of linear algebraic equations which can be written as

	 Ax b= 	 (7)

Structure of the matrix is typical of sparse systems which can be solved by using difference 
methods e.g. Gauss elimination or the conjugate gradient method with row-indexed compact 
storage [29]. These methods are very efficient because the computing elements which contain 
zero values are not used; therefore, the time of the whole simulation is shorter. 

The macrostructural image of the obtained Al-TiC composite produced in the experimental 
test confirms the good quality of the modified layer (Fig. 7). The mixed zone of the two phases 
which is located on the upper side of the sample contains circle oxide lines which are peculiar 
to the aluminium joints. They additionally include the TiC particles. The composite layer was 
obtained by one pass of the FSA tool.

Fig. 7.	 Macrostructure image of the sample Al-TiC composite produced with one pass of the welding tool
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The results from the simulation confirm the qualitative temperature distribution field in the 
workpiece after the end of the first stage of the FSA process (Fig. 8). The maximum temperature 
of the plunge stage is around 390ºC and is located where both parts of the tool (pin and shoulder) 
are joined. The skew isotherms are typical for this kind of technology and change during the 
tool penetration process. The heat influence of the added shoulder allows the curvature to 
stabilise itself. The zones which are set down by these isotherms are related to the respective 
zones in the FSW/FSA join structure. A high drop in the temperature field is observed in place 
which is proper to the heat affected zone (HAZ); whereas, at the point where the thermo-
mechanically affected zone is typically located, the temperature is almost homogeneous.

Fig. 8.	 Temperature fields in different periods of the tool penetration in the base material: a) time 4 s 
– depth of the pin 0.8 mm; b) time 18 s – depth 3.6 mm; c) time 28 s – depth 5 mm
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4.  Conclusions

The temperature field map was obtained as a result of solving the boundary problem of 
producing an Al-TiC composite by using FSA technology. It was observed that after adding the 
shoulder heat influence, the rate of temperature change increases and this confirms that this 
part of the tool has the largest effect on the material. The skew isotherms are specific for this 
technology and are dictated by the combined heat influence from the probe and the shoulder. 
They correlate with the respective zones in the FSA composite e.g. with the HAZ area. The 
maximum temperature occurs at the end of dwelling time (around 28 seconds) when the 
tool fully penetrates the material and the value of it is about 390 degrees of Celsius. This is 
lower than the melting point of this aluminium alloy which corresponds with this technology 
property. The highest temperature is located in the place where both parts of the tool are joined. 

Future research should also focus upon the development of a new mathematical model 
which will include the impact of plastic deformation on the generated heat energy and the 
variable dependence from the temperature. Also it assumes the development of the 3D 
simulation of two-phase material flow in the stirring zone during all stages in order to estimate 
the TiC particle distribution inside the composite. New experiments will be performed to 
obtain data concerning temperature profiles, downward force, traverse force and torque.
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