FAQ

Measurements of the angular and linear displacements of steered wheel

Publication date: 22.02.2018

Technical Transactions, 2018, Volume 2 Year 2018 (115), pp. 219 - 227

https://doi.org/10.4467/2353737XCT.18.032.8005

Authors

Krzysztof Wach
Kraków University of Economics, Kraków, Poland
All publications →

Titles

Measurements of the angular and linear displacements of steered wheel

Abstract

This paper concerns the use of a prototype measuring instrument for conducting measurements of the linear and angular displacements of a steered wheel in relation to the car body. The theoretical principles
of the measurement are presented, as are the notation method and a solution to the system of equations of the geometric constraints of the instrument’s mechanism. In the research section, the manner in which the measurements were conducted is discussed and sample results are described. A preliminary analysis of the results is performed in the summary section.

References

[1] Jonsson J., Simulation of Dynamical Behaviour of a Front Wheel Suspension, Vehicle System Dynamics, Vol. 20(5)/1991, 269–281.
[2] Lozia Z., An analysis of vehicle behaviour during lane-change manoeuvre on an uneven ROAD surface, Vehicle System Dynamics, Vol. 20(sup1)/1992, 417–431.
[3] Ammon D., Gipser M., Rauh J., Wimmer J., High Performance System Dynamics Simulation of the Entire System Tire-Suspension-Steering-Vehicle, Vehicle System Dynamics, Vol. 27(5–6)/1997, 435–455.
[4] Baumal A.E., McPhee J.J., Calamai P.H., Application of genetic algorithms to the design optimization of an active vehicle suspension system, Computer Methods in Applied Mechanics and Engineering, Vol. 163(1–4)/1998, 87–94.
[5] Gobbi M., Mastinu G., Doniselli C., Optimising a Car Chassis, Vehicle System Dynamics, Vol. 32(2–3)/1999, 149–170.
[6] Sancibrian R., Garcia P., Viadero F., Fernandez A., De-Juan A., Kinematic design of double-wishbone suspension systems using a multiobjective optimisation approach, Vehicle System Dynamics, Vol. 48(7)/2010, 793–813.
[7] Vilela D. Barbosa R.S., Analytical models correlation for vehicle dynamic handling properties, J. Braz. Soc. Mech. Sci. & Eng., Vol. 33(4)/2011, 437–444.
[8] Balike K. P., Rakheja S., Stiharu I., Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension, Vehicle System Dynamics,
Vol. 49(1–2)/2011, 107–128.
[9] Shim T., Velusamy P.C., Improvement of vehicle roll stability by varying suspension properties, Vehicle System Dynamics, Vol. 49(1–2)/2011, 129–152.
[10] Mántaras D. A. Luque P., Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems, Vehicle System Dynamics, Vol. 50(50)/2012, 1563–1584.
[11] Reimpell J.,Betzler W., Podwozia samochodów. Podstawy konstrukcji, WKŁ, Warszawa 2002.
[12] Kanpczyk J., Dzierżek S., Elastokinematic Analysis of Five-rod Suspension with Flexible Joints, Including Effects of Shock Absorber, Vehicle System Dynamics, Vol. 29(sup1)/1998, 270–79.
[13] Cao D., Song X., Ahmadian M., Editors’ perspectives: road vehicle suspension design, dynamics, and control, Vehicle System Dynamics, Vol. 49(1–2)/2011, 3–28.
[14] Abe M., Vehicle Handling Dynamics, Second Edition: Theory and Application, Butterworth-Heinemann, 2015.
[15] Janczur R., Analityczno- eksperymentalna metoda badań sterowności samochodu, Politechnika Krakowska, Ph.D. Thesis, Kraków 2002
[16] Struski J., Quasi- statyczne modelowanie sterowności samochodu, Wydawnictwo Politechniki Krakowskiej, Monografia 144, Kraków 1993.
[17] Struski J., Przyrząd do pomiaru dynamicznego kąta skrętu koła kierowanego, Patent
No. P–267693.
[18] Blumenfeld W., Schneider W., Opto- elektronisches Verfahrenzur Spur- und Sturz-winkelmessung am fahrenden Farzeug, ATZ 87(1)/1985, 17–21.
[19] Struski J,. Kowalski M., Podstawy teoretyczne uogólnionych zagadnień z zakresu parametryzacji układów prowadzenia kół względem nadwozia, Technical Transactions, 6-M/2008, 119–129.
[20] Struski J., Wach K., Analiza mechanizmu przyrządu pomiarowego do wyznaczania translacji i rotacji zwrotnicy z kołem kierowanym, Technical Transactions, 3-M/2012, 87–100.
[21] Struski J., Wach K., Teoretyczne podstawy wyznaczania przemieszczeń liniowych oraz kątowych koła kierowanego, Czasopismo Logistyka – Nauka [Electronic document], Optical Disc CD, Vol. 4/2015, 5840–5849.
[22] Wach K., The theoretical analysis of an instrument for linear and angular displacements of the steered wheel measuring, IOP Conference Series: Materials Science and Engineering IOP, Vol. 148(1)/2016.
[23] CORSYS- DATRON RV-4 Wheel Vector Sensor for Simultaneous Measurement of all Wheel Positions and Orientations in 5 Axes, User manual, Vol. I, Wetzlar, Germany 2008.
[24] Wach K., Kupiec R., Determination of initial configuration of mechanism of an instrument for measuring the translation and rotation of a steered wheel, Technical Transactions, 6-M/2017, 197–2017.
[25] Grzyb A., On a perturbation method for the analysis of the kinetostatics of mechanisms. Akademie Verlag, ZAMM, Z. Angew. Math. Mech. 72/1992, T615–T618.
[26] Grzyb A., Struski J., Metody wyznaczania kinematyki wielowahaczowych zawieszeń kół ogumionych, Teka Komisji Naukowo-Problemowej Motoryzacji, Vol. 16/1998,
9–17.

Information

Information: Technical Transactions, 2018, Volume 2 Year 2018 (115), pp. 219 - 227

Article type: Original article

Titles:

Polish:

Measurements of the angular and linear displacements of steered wheel

English:

Measurements of the angular and linear displacements of steered wheel

Authors

Kraków University of Economics, Kraków, Poland

Published at: 22.02.2018

Article status: Open

Licence: None

Percentage share of authors:

Krzysztof Wach (Author) - 100%

Article corrections:

-

Publication languages:

English