Ultrastructure and 28S rDNA Phylogeny of Two Gregarines: Cephaloidophora cf. communis andHeliospora cf. longissima with Remarks on Gregarine Morphology and Phylogenetic Analysis
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEUltrastructure and 28S rDNA Phylogeny of Two Gregarines: Cephaloidophora cf. communis andHeliospora cf. longissima with Remarks on Gregarine Morphology and Phylogenetic Analysis
Publication date: 13.07.2015
Acta Protozoologica, 2015, Volume 54, Issue 3, pp. 241 - 262
https://doi.org/10.4467/16890027AP.15.020.3217Authors
Ultrastructure and 28S rDNA Phylogeny of Two Gregarines: Cephaloidophora cf. communis andHeliospora cf. longissima with Remarks on Gregarine Morphology and Phylogenetic Analysis
18S rRNA gene sequences (SSU rDNA) in gregarines are problematic for phylogenetic analysis, mainly due to artifacts related to long branch attraction (LBA). In this study, we sequenced 18S rRNA (SSU rRNA), 5.8S rRNA, and 28S rRNA (LSU rRNA) genes of two gregarine species from crustacean hosts (gregarine superfamily Cephaloidophoroidea): Cephaloidophora cf. communis from a marine cirripedian Balanus balanus (White Sea), and Heliospora cf. longissima from the freshwater amphipods, Eulimnogammarus verrucosus and E. vittatus (Lake Baikal). Phylogenetic analyses of SSU rDNA sequences failed to produce a robust tree topology, for a limited taxon sample (31 operational taxonomic units (OTU), based on 1,604 sites), while LSU (2,869 sites), and concatenated dataset based on SSU, 5.8S, and LSU (4,627 sites) produced more consistent tree topologies for the same taxon sample. Analyses testing for LBA-influence were negative, therefore we suggested that the main reason of the failed topologies in SSU rDNA analyses is insufficient data (insufficient taxon sampling and limited molecular data), rather than LBA. Possible advantages of Bayesian analyses, compared to Maximum Likelihood, and usage of LSU rDNA within the context of apicomplexan phylogenetics were discussed. One of the advantages of LSU is likely its lower rate of evolution in long-branching apicomplexans (e.g., gregarines), relative to other (non-long-branching) apicomplexans, compared to SSU rDNA. Ultrastructure of the epicytic folds was studied. There are 3 to 5 apical arcs (also known as rippled dense structures) and 2 to 5 apical filaments in the tops of the folds. This small number of the apical structures fits into morphological diversity of the epicyte in other Cephaloidophoroidea, but this is not a synapomorphy of the group because this was also detected in several unrelated gregarines. C. cf. communis was found to contain a septum between the epimerite and the protomerite, which has not been reported in other gregarines. More exact terminology, which takes into account number of body sections and septa, is proposed for morphological descriptions of trophozoites and free mature gamonts of gregarines. In accordance with this, C. cf. communis gamonts are tricystid and biseptate, whereas H. cf. longissima gamonts are tricystid and uniseptate, similar to other eugregarines.
Adl S. M., Simpson A. G. B., Lane C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M., Hampl V., Heiss A.,
Alfaro M. E., Zoller S., Lutzoni F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 20: 255–266
Bergsten J. (2005) A review of long-branch attraction. Cladistics 21: 163–193
Baudoin J., Ormières R. (1973) Sur quelques particularités de l’ultrastructure de Didymophyes chaudefouri Ormières, Eugregarine, Didymophyidae. C. R. Acad. Sci. D. 277: 73–75
Bourlat S. J., Nielsen C., Economou A. D., Telford M. J. (2008) Testing the new animal phylogeny: A phylum level molecular analysis of the animal kingdom. Mol. Phylogenet. Evol. 49: 23–31
Campbell V., Lapointe F.-J. (2009) The use and validity of composite taxa in phylogenetic analysis. Syst. Biol. 58: 560–572
Cleary A. C., Durbin E. G., Rynearson T. A. (2012) Krill feeding on sediment in the Gulf of Maine (North Atlantic). Mar. Ecol. Prog. Ser. 455: 157–172
Clopton R. E. (2000) Order Eugregarinorida Leger, 1900. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). Society of Protozoologists, Lawrence, KS, 205–288
Clopton R. E. (2009) Phylogenetic relationships, evolution, and systematic revision of the septate gregarines (Apicomplexa: Eugregarinorida: Septatorina). Comp. Parasitol. 76: 167–190
Corbel J.-C., Desportes I, Théodoridès J. (1979). Étude de Gonospora beloneides (Ming.) (=Lobianchella beloneides Ming.) (grégarine Urosporidae), parasite coelomique d’ une Alciopidae (Polychaeta) et remarques sur d’autres grégarines d’ Alciopidae. Protistologica 15: 55–65
Cummings M. P., Handley S. A., Myers D. S., Reed D. L., Rokas A., Winka K. (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Syst. Biol. 52: 477–487
Dallai R., Vegni Talluri M. (1988) Evidence for septate junctions in the syzygy of the protozoon Gregarina polymorpha (Protozoa, Apicomplexa). J. Cell Sci. 89: 217–224
Delsuc F., Brinkmann H., Chourrout D., Philippe H. (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439: 965–968
Desportes I. (1969) Ultrastructure et développement des Grégarines du genre Stylocephalus. Ann. Sci. Nat. Zool. Ser. 12. 11: 31–96
Desportes I. (1974) Ultrastructure et evolution nucléaire des trophozoïtes d’une Grégarine d’Ephéméroptère: Enterocystis fungoides M. Codreanu. J. Protozool. 21: 83–94
Desportes I., Théodoridès J. (1985) Particularités cytologiques d’ Uradiophora maetzi Théod. et Desp. (Eugregarina, Uradiophoridae) parasite du Mysidace bathypelagique Gnathophausia zoea WS. Ann. Sci. Nat. Zool. Ser. 13. 7: 199–213
Desportes I., Schrével J. (Eds.) (2013) Treatise on Zoology – Anatomy, Taxonomy, Biology. The Gregarines. Brill, Leiden, 2 vols
Desportes I., Vivarès C. P., Théodoridès J. (1977) Intérêt taxinomique de l’ultrastructure épicytaire chez Ganymedes Huxley, Porospora Schneider et Thiriotia n.g. Eurégarines parasites de Crustacés. Ann. Sci. Nat. Zool. Ser. 12. 19: 261–277
Devauchelle G. (1968a) Étude ultrastructurale du développement des Grégarines du Tenebrio molitor L. Protistologica 4: 313–332
Devauchelle G. (1968b) Étude ultrastructurale de Gregarina polymorpha (Hamm.) en syzygie. J. Protozool. 15: 629–636
Douady C. J., Delsuc F., Boucher Y., Doolittle W. F., Douzery E. J. P. (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20: 248–254
Dyakin A. Y., Simdyanov T. G. (2005) The cortical zone of skittle-like cells of Urospora chiridotae, a gregarine from an apode holothuria Chiridota laevis. Protistology 4: 97–105
Edgar R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 35: 1792–1797
Edgcomb V.P., Beaudoin D., Gast R., Biddle J.F., Teske A. (2011) Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol. 13: 172–183
Erixon P., Svennblad B., Britton T., Oxelman B. (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 52: 665–673
Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791
Floyd R. M., Abebe E., Papert A., Blaxter M. L. (2002) Molecular barcodes for soil nematode identification. Mol. Ecol. 11: 839–850
Frolov A. O. (1991) World fauna of gregarines. Family Monocystidae. Zool. Inst. Acad. Sci. USSR, Leningrad (in Russian with English summary)
Grassé P.-P., Théodoridès J. (1959) Recherches sur l’ultrastructure de quelques Grégarines. Ann. Sci. Nat. Zool. Ser. 12. 1: 296–305
Grassé P.-P. (1953) Classe des Grégarinomorphes. In: Traité de Zoologie (Ed. P.-P. Grassé). Masson, Paris, 550–690
Hall T. A. (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. Sym. Ser. 41: 95–98
Hildebrand H. F. (1976) Elektronenmikroskopische Untersuchungen an den Entwicklungstadien des Trophozoiten von Didymophyes gigantea (Sporozoa, Gregarinida). 1. Die Feinstruktur des Proto- und Epimeriten und die Beziehung zwischen Wirt und Parasit. Z. Parasitenk. 49: 193–215
Hildebrand H. F. (1981) Elektronenmikroskopische Untersuchungen an den Entwicklungsstadien des Trophozoiten von Didymophyes gigantea (Sporozoa, Gregarinida). 3. Die Feinstruktur des Epizyten mit besonderer Berücksichtigung der kontraktilen Elemente. Z. Parasitenk. 64: 29–46
Hoshide K. (1975) Studies on the gregarines in Japan (Part 1). The fine structure of some gregarines. Bull. Fac. Educ. Yamaguchi Univ. 25: 71–106
Janardanan K. P., Ramachandran P. (1983) Differential permeability of protomerite and deutomerite epicytes of the cephaline gregarine, Stenoductus carlogoni (Cephalina, Monoductidae) to cupric ions and vital stains. Indian J. Exp. Biol. 21: 572–574
Jobb G. (2011) TREEFINDER version of March 2011. 2011. Munich, Germany. Distributed by the author at www.treefinder.de
Jobb G., von Haeseler A., Strimmer K. (2004) TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4: 18
Kishino H., Hasegawa M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J. Mol. Evol. 29: 170–179
Lacombe D., Jakowska S., Silva E. (2002) Gregarine Cephaloidophora communis Mawrodiadi, 1908 in the barnacle Euraphia rhyzophorae Oliveira, 1940 from Brazil. Mem. Inst. Oswaldo Cruz 97: 1057–1061
Landers S.C. (2002) The fine structure of the gamont of Pterospora floridiensis (Apicomplexa: Eugregarinida). J. Eukaryot. Microbiol. 49(3): 220–226
Landers S.C. and Leander B. S. (2005) Comparative surface morphology of marine coelomic gregarines (Apicomplexa, Urosporidae): Pterospora floridiensis and Pterospora schizosoma. J. Eukaryot. Microbiol. 52: 23–30
Leander B. S. (2007) Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). Zool. Scripta 36: 213–227
Leander B. S., Keeling P. J. (2004) Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. J. Phycol. 40: 341–350
Leander B. S., Clopton R. E., Keeling P. G. (2003a) Phylogeny of gregarines (Apicomplexa) as inferred from SSU rDNA and β-tubulin. Int. J. Syst. Evol. Microbiol. 53: 345–354
Leander B. S., Harper J. T., Keeling P. G. (2003b) Molecular phylogeny and surface morphology of marine aseptate gregarines (Apicomplexa): Selenidium spp. and Lecudina spp. J. Parasitol. 89: 1191–1205
Leander B. S., Lloyd S. A. J., Marshall W., Landers S. C. (2006) Phylogeny of marine gregarines (Apicomplexa) – Pterospora, Lithocystis and Lankesteria – and the origin(s) of coelomic parasitism. Protist 157: 45–60
Levine N. D. (1970) Taxonomy of the Sporozoa. J. Parasitol. 56 (sec. 2): 208–209
Levine N. D. (1971) Uniform terminology for the protozoan subphylum Apicomplexa. J. Protozool. 18: 352–355
Levine N. D. (1979) New genera and higher taxa of septate gregarines (Protozoa, Apicomplexa). J. Protozool. 26: 532–536
Levine N. D. (1984) Nomenclatural corrections and new taxa in the apicomplexan Protozoa. Trans. Am. Microsc. Soc. 103: 195–204
Levine N. D. (1985) Phylum 2. Apicomplexa Levine, 1970. In: An Illustrated Guide To The Protozoa (Eds. J. J. Lee, S. H. Hutner, E. C. Bovee). Society of Protozoologists, KS, 322–374
Levine N. D. (1988a) The protozoan phylum Apicomlexa. CRC Press, Boca Raton, FL, 2 vols
Levine N. D. (1988b) Progress in taxonomy of the apicomplexan Protozoa. J. Protozool. 35: 518–520
Levine N. D., Corliss J. O., Cox F. E. G., Deroux G., Grain J., Honigberg B. M., Leedale G. F., Loeblich A. R., Lom J., Lynn D., Merinfeld E. G., Page F. C., Poljansky G., Sprague V., Vavra J.,
MacMillan W. G. (1973a) Conformation changes in the cortical region during peristaltic movements of a gregarine trophozoite. J. Protozool. 20: 267–274
Marques A., Ormières R., Puissegur C. (1978) Observations en microscopie électronique a balayage de quelques stades de Trichorhynchus pulcher Schneider, 1882, Eugrégarine parasite de Scutigera (Myriapodes, Chilopodes). Ann. Sci. Nat. Zool. 20: 27–36
Mercier C., Schrével J., Stark J.R. (1973) The storage polysaccharide (paraglycogen) of the gregarine, Gregarina blaberae: cytology and biochemistry. Comp. Biochem. Physiol. 44B: 1001–1010
Miles H. B. (1968) The fine structure of the epicyte of the acephaline gregarines Monocystis lumbrici–olidi, and Nematocystis magna: observations by electron microscope. Rev. Iber. Parasitol. 28: 455–465
Ormières R. (1977) Pyxinia firmus (Léger 1892), Eugrégarine parasite du Coléopter Dermestes frischi Kugel. Étude ultrastructurale. Z. Parasitenk. 53: 13–22
Ormières R., Daumal J. (1970a) Données ultrastructurales sur Epicavus araeoceri Orm. Daum., eugrégarine parasite d`Araeocerus fasciculatus de Geer (Coléoptere; Anthribidae). C. R. Acad. Sci. D. 270: 2451–2453
Ormières R., Daumal J. (1970b) Étude ultrastructurale de la partie antérieure d’Epicavus araeoceri Ormières, Daumal, eugregarine parasite du coléoptere Anthribidae Araeocerus fascilulatus de Geer. Protistologica 6: 97–111
Perkins F. O., Barta J. R., Clopton R. E., Peirce M. A., Upton S. J. (2000) Phylum Apicomplexa. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). Society of Protozoologists, Lawrence, KS, 190–370
Petrov N. B., Pegova A. N., Manylov O. G., Vladychenskaya N. S., Mugue N. S., Aleshin V. V., (2007) Molecular phylogeny of Gastrotricha on the basis of a comparison of the 18S rRNA genes: rejection of the hypothesis of a relationship between Gastrotricha and nematoda. Mol. Biol. 41: 445–452
Philippe M. (1983) Differentiation and cellular arrangement of Gregarina blaberae gamonts. J. Protozool. 30: A72
Philippe H., Snell E. A., Bapteste E., Lopez P., Holland P. W. H., Casane D. (2004) Phylogenomics of Eukaryotes: Impact of Missing Data on Large Alignments. Mol. Biol. Evol. 21: 1740–1752
Poisson R. (1924) Sur quelques Grégarines parasites de Crustacés, observées à Luc–sur–mer (Calvados). Bull. Soc. Zool. France 49: 238–248
Porchet-Henneré E., Fischer A. (1973) Diplauxis schreveli, n. sp., Grégarine parasite du coelome de l’Annélide Polychète Platynereis dumerilli: cycle et étude ultrastructurale préliminaire. Protistologica 9: 437–454
Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574
Rueckert S., Leander B. S. (2008) Morphology and phylogenetic position of two novel marine gregarines (Apicomplexa, Eugregarinorida) from the intestines of North-Eastern Pacific ascidians. Zool. Scripta 37: 637–645
Reynolds E.S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17: 208–212
Rueckert S., Leander B. S. (2009) Molecular phylogeny and surface morphology of marine archigregarines (Apicomplexa), Selenidium spp., Filipodium phascolosomae n. sp. and Platyproteum
Rueckert S., Leander B. S. (2010) Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – an intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae). J. Invertebr. Pathol. 104: 172–179
Rueckert S., Chantangsi C., Leander B. S. (2010) Molecular systematics of marine gregarines (Apicomplexa) from North-Eastern Pacific polychaetes and nemerteans, with descriptions of three novel species: Lecudina phyllochaetopteri sp. nov., Difficilina tubulani sp. nov. and Difficilina paranemertis sp. nov. Int. J. Syst.
Rueckert S., Villette P. M. A. H., Leander B. S. (2011a) Species boundaries in gregarine apicomplexan parasites: a case study – comparison of morphometric and molecular variability in Lecudina cf. tuzetae (Eugregarinorida, Lecudinidae). J. Eukaryot. Microbiol. 58: 275–283
Rueckert S., Simdyanov T. G., Aleoshin V. V., Leander B. S. (2011b) Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts. PLoS ONE 6: e18163. doi:10.1371/journal.pone.0018163
Rueckert S., Wakeman K. C., Leander B. S. (2013) Discovery of a diverse clade of gregarine Apicomplexans (Apicomplexa: Eugregarinorida) from Pacific eunicid and onuphid polychaetes, including descriptions of Paralecudina n. gen., Trichotokara japonica n. sp., and T. eunicae n. sp. J. Eukaryot. Microbiol.
Schrével J., Caigneaux E., Gros D., Philippe M. (1983) The three cortical membranes of the gregarines. I. Ultrastructural organization of Gregarina blaberae. J. Cell Sci. 61: 151–174
Shimodaira H. (2002) An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51: 492–508
Shimodaira H., Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16: 1114–1116
Simdyanov T. G. (1995) Two new species of gregarines with the aberrant structure of epicyte from the White Sea. Parazitologiya 29: 305–315
Simdyanov T. G. (2004) Sphinctocystis phyllodoces gen. n., sp. n. (Eugregarinida: Lecudinidae) – a new gregarine from Phyllodoce citrina (Polychaeta: Phyllodocidae). Parazitologiya 38: 322–332
Simdyanov T. G. (2009) Difficilina cerebratuli Gen. et sp. n. (Eugregarinida: Lecudinidae) – a new gregarine species from the nemertean Cerebratulus barentsi (Nemertini: Cerebratulidae). Parazitologiya 43: 273–287
Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690
Strimmer K., Rambaut A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proc. Roy. Soc. B. 269: 137–142
Templeton T. J., Enomoto S., Chen W. J., Huang C. G., Lancto C. A., Abrahamsen M. S., Zhu G. (2010) A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium. Mol. Biol. Evol. 27: 235–248
Toso M. A., Omoto C. K. (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 54: 66–72
Tronchin G., Schrével J. (1977) Chronologie des modifications ultrastructurales au cours de la croissance de la Gregarima blaberae. J. Protozool. 24: 67–82
Valigurová A. (2012) Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS ONE 7: e42606
Valigurová A., Hofmannová L., Koudela B., Vávra J. (2007) An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J. Eukaryot. Microbiol. 54: 495–510
Valigurová A., Koudela B. (2005) Fine structure of trophozoites of the gregarine Leidyana ephestiae (Apicomplexa: Eugregarinida) parasitic in Ephestia kuehniella larvae (Lepidoptera). Eur. J. Protistol. 41: 209–218
Valigurová A., Michalková V., Koudela B. (2009) Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: fiction or fact? Int. J. Parasitol. 39: 1235–1242
Valigurová A., Vaskovicová N., Musilová N. Schrével J. (2013) The enigma of eugregarine epicytic folds: where gliding motility originates? Frontiers in Zoology 10: 57
Van der Auwera G., Chapelle S., De Wachter R. (1994) Structure of the large ribosomal subunit RNA of Phytophtora megasperma, and phylogeny of the oomycetes. FEBS Letters 338: 133–136
Vinckier D. (1969) Organisation ultrastructurale corticale de quelques Monocystidees parasites du ver Oligochete Lumbricus terrestris L. Protistologica 5: 505–517
Vinckier D., Vivier E. (1968) Organisation ultrastructurale corticale de la gregarine Monocystis herculea. C. R. Acad. Sci. D. 266: 1737–1739
Vivier E. (1968) L’organisation ultrastructurale corticale de la Grégarine Lecudina pellucida; ses rapports avec l’alimentation et la locomotion. J. Protozool. 5: 230–246
Vivier E., Devauchelle G., Petitprez A., Porchet-Henneré E., Prensier G., Schrével J., Vinckier D. (1970) Observations de cytologie comparée chez les Sporozoaires. I. – Les structures superficielles chez les formes végétatives. Protistologica 6: 127–150
Wakeman K. C., Leander B. S. (2012) Molecular phylogeny of pacific archigregarines (Apicomplexa), including descriptions of Veloxidium leptosynaptae n. gen., n. sp., from the sea cucumber Leptosynapta clarki (Echinodermata), and two new species of Selenidium. J. Eukaryot. Microbiol. 59: 232–245
Wakeman K. C., Leander B. S. (2013) Identity of environmental DNA sequences using descriptions of four novel marine gregarine parasites, Polyplicarium n. gen. (Apicomplexa), from capitellid polychaetes. Mar. Biodivers. 43: 133–147
Walker M. H., Lane N. J. (1982) Freeze-fracture studies on the epicyte of Gregarina garnhami. J. Protozool. 29: 640
Information: Acta Protozoologica, 2015, Volume 54, Issue 3, pp. 241 - 262
Article type: Original article
Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Russia
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
Published at: 13.07.2015
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
English