Protozoa and Oxygen
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEProtozoa and Oxygen
Publication date: 2014
Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 3 - 12
https://doi.org/10.4467/16890027AP.13.0020.1117Authors
Protozoa and Oxygen
Aerobic protozoa can maintain fully aerobic metabolic rates even at very low O2-tensions; this is related to their small sizes. Many – or perhaps all – protozoa show particular preferences for a given range of O2-tensions. The reasons for this and the role for their distribution in nature are discussed and examples of protozoan biota in O2-gradients in aquatic systems are presented. Facultative anaerobes capable of both aerobic and anaerobic growth are probably common within several protozoan taxa. It is concluded that further progress in this area is contingent on physiological studies of phenotypes.
Alve E., Bernhard J. M. (1995) Vertical migratory response of ben- thic foraminifera to controlled oxygen concentrations in an ex- perimental mesocosm. Mar. Ecol. Prog. Ser. 23: 207–208
Behnke A., Barger K. J., Bunge J., Stoeck T. (2010) Spatio-temporal variations in protistan communities along an O /H S gradient in tosynthesis to host respiratory oxygen requirements. FEMS Mi crobiol. Ecol. 20: 229–235
Finlay B. J., Maberly S. C., Cooper J. L. (1997) Microbial diversity and ecosystem function. Oikos 80: 209–213
Berg H. C. (1983) Random Walks in Biology. Princeton University Press, Princeton
Bernard C., Fenchel T. (1996) Some microaerobic ciliates are facul- tative anaerobes. Eur. J. Protistol. 32: 293–297
Bernard C., Simpson A. G. B., Patterson D. J. (2000) Some free living flagellates from anoxic habitats. Ophelia 52: 113–142
Degn H., Kristensen B. (1981) Low sensitivity of Tubifex spp respi- ration to hydrogen sulfide and other inhibition. Comp. Biochem. Physiol. 69 B: 809–817
Edgcomb V., Orsi W., Taylor G. T., Vadacny C., Suarez P., Epstein S. (2011) Accessing marine protists from the anoxic Cariaco Basin. ISME J. 5: 1237–1241Fenchel T. (1969) The ecology of marine microbenthos IV. Ophelia 6: 1–182
Fenchel T. (1996a) Worm burrows and oxic microniches in marine sediments. 1. Mar. Biol. 127: 289–293
Fenchel T. (1996b) Worm burrows and oxic microniches in marine sediments. 2. Distribution patterns of ciliated protozoa. Mar. Biol. 127: 297–301
Fenchel T. (2011) Anaerobic eukaryotes. In: Anoxia, (Eds. A. V. Al- tenbach, J. M. Bernhard, J. Seckbach). Cellular Origin, Life in Extreme Habitats and Astrobiology 21: 3–16
Fenchel T., Bernard C. (1996) Behavioural responses in oxygen gradients of ciliates from microbial mats. Eur. J. Protistol. 32: 53–63
Fenchel T., Finlay B. J. (1983) Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9: 99–122
Fenchel T., Finlay B. J. (1984) Geotaxis in the ciliated protozoon Loxodes. J. Exp. Biol. 110: 17–33
Fenchel T., Finlay B. J. (1986) Photobehavior of the ciliated protozo- on Loxodes: taxic, transient and kinetic responses in the presence and absence of oxygen. J. Protozool. 33: 139–145
Fenchel T., Finlay B. J. (1989) Kentrophoros: a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30: 75–93
Fenchel T., Finlay B. J. (1990) Oxygen toxicity, respiration and be- havioural responses to oxygen in free-living anaerobic ciliates. J. Gen. Microbiol. 136: 1953–1959
Fenchel T., Finlay B. J. (2006) The diversity of microbes: resurgence of the phenotype. Phil. Trans. R. Soc. B 361: 1965–1973
Fenchel T., Finlay B. J. (2008) Oxygen and the spatial structure of microbial communities. Biol. Rev. 83: 553–569
Fenchel T., Finlay B. J., Gianní (1989) Microaerophily in ciliates: responses of a Euplotes sp. (Hypotrichida) to oxygen tension. Arch. Protistol. 137: 317–330
Fenchel T., Kristensen L. D., Rasmussen L. (1990) Water column anoxia: vertical zonation of plankton protozoa. Mar. Ecol. Prog. Ser. 62: 1–10
Fenchel T., Bernard C., Esteban G., Finlay B. J., Hansen P. J., Iver- sen N. (1995) Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43: 45–100
Finlay B. J., Esteban G. (1998) Planktonic ciliate species diversity as an integral component of ecosystem function in a freshwater pond. Protist 149: 155–165
Finlay B. J., Span A. S. W., Harman J. M. P. (1983) Nitrate respira- tion in primitive eukaryotes. Nature 303: 333–336
Finlay B. J., Fenchel T., Gardner S. (1986) Oxygen perception and O toxicity in the freshwater ciliated protozoon Loxodes. J. Pro tozool. 33: 157–165
Finlay B. J., Maberly S. C., Esteban G. (1996) Spectacular abun- dance of ciliates in anoxic water: contribution of symbiont pho- Indiana
Glud R. (2008) Oxygen dynamics of marine sediments. Mar. Biol. Res. 4: 243–289
Jennings H. S. (1906) Behavior of Lower Organisms. Blomington, the anoxic Framvaren Fjord (Norway). FEMS Microbiol. Ecol. 72: 89–102
Krieg N. R., Hoffmann P. S. (1986) Microaerophily and oxygen tox- icity. Ann. Rev. Microbiol. 40: 107–130
Kühl M., Rockelt L. F., Thar R. (2007) Combined imaging of bac- teria and oxygen in biofilms. Appl. Environ. Microbiol. 73: 6289–6295
Lloyd D., Kristensen B., Degn H. (1980) The effect of inhibitors on the oxygen kinetics of terminal oxidases of Tetrahymena pyri formis ST. J. Gen. Microbiol. 121: 117–125
Lloyd D., Williams J., Yarlett N., Williams A. G. (1982) Oxygen affinities of the hydrogenosome-containing protozoa Tritricho monas foetus and Dasytricha ruminantium, and two aerobic pro- tozoa determined by bacterial bioluminescence. J. Gen. Micro biol. 128: 1019–1022
Matsuoka T. (1983) Negative phototaxis in Blepharisma japonicum. J. Protozool. 30: 409–414
Nanney D. L., Park C., Preparata R. M., Simon E. (1998) Com- parison of sequence differences in a variable 23S rRNA domain among sets of cryptic species of a ciliated protozoan. J. Eukary ot. Microbiol. 51: 402–416 Orsi W., Song Y. C., Hallam S., Edgcomb V. (2012) Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6: 1586–1601
Riley J. P., Skirrow G. (Eds.) (1975) Chemical Oceanography (2nd ed.). Academic Press, London
Smirnov A. V., Fenchel T. (1996). Vahlkampfia anaerobica n.sp. and Vanella peregrina n.sp. (Rhizopoda) – anaerobic amoebae from a marine sediment. Arch. Protistenk. 147: 189–198
Smirnov A. V., Thar R. (2004) Vertical distribution of gymnamoebae (Rhizopoda, Lobosea) in the top layer of brackish-water sedi- ments. Protist 155: 437–446
Stock A., Jürgens K., Bunge J., Stoeck T. (2009) Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat. Microb. Ecol. 55: 267–284
Stock A., Breiner H.-W., Pachiadaki M., Edgcomb V., Filker S., La Cono V., Yakimov M. M., Stoeck T. (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16: 21–34
Stolper D. S., Revsbech N. P., Canfield D. E. (2010) Aerobic growth at nanomolar oxygen concentrations. PNAS 107: 18755–18760
Ulloa O., Canfield D. E., DeLong E. F., Letelier R. M., Stewart F. J. (2012) Microbial oceanography of oxygen minimum zones. PNAS 109: 1596–1603
Van der Giezen M. (2011) Mitochondria and the rise of eukaryotes.BioScience 61: 592–601
Zuendorf A., Bunge J., Behnke A., Barger J-A. K., Stoeck T. (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol. Ecol. 58: 476–491
Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 3 - 12
Article type: Original article
Marine Biological Laboratory, University of Copenhagen
Published at: 2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
English