FAQ
Jagiellonian University logo

Problematic Biases in the Availability of Molecular Markers in Protists: The Example of the Dinoflagellates

Publication date: 2014

Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 63 - 75

https://doi.org/10.4467/16890027AP.13.0021.1118

Authors

Fernando Gómez
Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Maison de la Recherche en Environnement Naturel, 32 av. Foch, 62930 Wimereux, France
Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain
All publications →

Titles

Problematic Biases in the Availability of Molecular Markers in Protists: The Example of the Dinoflagellates

Abstract

Dinoflagellates (Alveolata, Dinophyceae) are protists with a truly remarkable diversity in lifestyles (free-living, parasites and mutualistic symbionts), habitats (marine, freshwater, plankton, benthos), and trophic modes (heterotrophic, plastid-containing). Here dinoflagellates are used to evaluate biases in the availability of molecular markers in relation to the variety of functional and ecological characteristics of protists. A large number of dinoflagellate sequences are available in GenBank, at least one for 56% of the 264 described genera. The most common marker is the small ribosomal subunit ribosomal DNA (49%). At the species level, SSU rDNA or the large subunit rDNA are available for 15% of the 2,386 described species. Availability of sequences of the internal transcribed spacers (ITS) and cytochrome oxidase I (COI) show a strong bias towards cultivable species. Relative to trophic mode, while about half of the known dinoflagellates are heterotrophic, only 12% of them have been sequenced compared to 29% of the plastid-containing species. For the COI marker availability is 10 times greater for plastid-containing compared to heterotrophic species. Freshwater species are underrepresented (13%) relative to the marine forms (22%). A high proportion of benthic species have been sequenced (46%) reflecting interest in Symbiodinium and harmful epiphytic taxa. Most of the relatively few described mutualistic species have been sequenced (> 80%). In contrast, only 17% of the described parasitic species have been sequenced, and most of the available sequences were not identified at the species level. In recent years, new species have been described mostly from coastal blooms or cultures. These studies are favored by the availability of abundant material for detailed studies of ultrastructure and multi-gene molecular phylogenies. Many methods are difficult to apply for the scarce specimens available from the open ocean. The requirement of these protocols, easy to apply with cultured species, is an obstacle in our knowledge of the open ocean diversity because it discourages studies based on sparse material. Consequently, in recent years descriptions of new species from the open ocean have declined considerably.

References

Download references

Anderson O. R. (2014) Living Together in the Plankton: A survey of marine protist symbioses. Acta Protozool. 53: 29–38

Annenkova N. V., Lavrov D. V., Belikov S. I. (2011) Dinoflagellates associated with freshwater sponges from the ancient lake Baikal. Protist 162: 222–236

Bachvaroff T. R., Kim S., Guillou L., Delwiche C. F., Coats D. W. (2012) Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appl. Environ. Microbiol. 78: 334–345

Baumeister W. (1957) Neue Dinococcalen aus dem niederbayerischen Hiigelland zwischen Isar und Inn (I). Arch. Protistenk 102: 21–43

Blaxter M. (2004) The promise of a DNA taxonomy. Phil. Trans. R. Soc. B 359: 669–679

Carbonell-Moore M. C. (1994) On the taxonomy of the family Podolampadaceae Lindemann (Dinophyceae) with descriptions of three new genera. Rev. Palaeobot. Palynol. 84: 73–99

Coats D. W., Kim S., Bachvaroff T. R., Handy S. M., Delwiche C. F. (2010) Tintinnophagus acutus n. g., n. sp. (Phylum Dinoflagellata), an ectoparasite of the ciliate Tintinnopsis cylindrica Daday 1887, and its relationship to Duboscquodinium collini Grassé 1952. J. Eukaryot. Microbiol. 57: 468–482

Daugbjerg N., Hansen G., Larsen J., Moestrup Ø. (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302–317

Ehara M., Imaga Y., Kazuo K., Watanabe I., Ohama T. (2000) Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial code evolution. Curr. Gen. 37: 29–33

Evans K. M., Wortleya A. H., Manna D. G. (2007) An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158: 349–364

Gómez F., Moreira D., López-García P. (2009) Life cycle and molecular phylogeny of the dinoflagellates Chytriodinium and Dissodinium, ectoparasites of copepod eggs. Eur. J. Protistol. 45: 260–270

Gómez F., Moreira D., López-García P. (2010a) Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist 161: 35–54

Gómez F., Moreira D., López-García P. (2010b) Molecular phylogeny of the dinoflagellates Podolampas and Blepharocysta (Peridiniales, Dinophyceae). Phycologia 49: 212–220

Gómez F., López-García P., Moreira D. (2011) Molecular phylogeny of dinophysoid dinoflagellates: The systematic position of Oxyphysis oxytoxoides and the Dinophysis hastata group (Dinophysales, Dinophyceae). J. Phycol. 47: 393–406

Gómez F. (2012a) A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Océanides 27: 65–140

Gómez F. (2012b) A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst. Biodivers. 10: 267–275

Gribble K. E., Anderson D. M. (2006) Molecular phylogeny of the heterotrophic dinoflagellates, Protoperidinium, Diplopsalis and Preperidinium (Dinophyceae), inferred from large subunit rDNA. J. Phycol. 42: 1081–1095

Guillou L., Viprey M., Chambouvet A., Welsh R. M., Kirkham A. R., Massana R., Scanlan D. J., Worden A. Z. (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10: 3349–3365

Hackett J. D., Anderson D., Erdner D. L., Bhattacharya D. (2004) Dinoflagellates: A remarkable evolutionary experiment. Am. J. Bot. 91: 1523–1534

Hansen G., Flaim G. (2007) Dinoflagellates of the Trentino Province, Italy. J. Limnol. 66: 107–141

Hastrup Jensen M., Daugbjerg N. (2009) Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) – testing the hypothesis of a Dinophysioid radiation. J. Phycol. 45: 1136–1152

Hebert P. D. N., Ratnasingham S., DeWaard J. R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270: S96–S99

Henze K., Martin W. (2003) Essence of mitochondria. Nature 426: 127–128

Hillis D. M., Dixon M. J. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411–453

Hinnebusch A. G., Klotz L. C., Blanken R. L., Loeblich III A. R. (1981) An evaluation of the phylogenetic position of the dinoflagellate Crypthecodinium cohnii based on 5S rRNA characterization. J. Mol. Evol. 17: 334–347

LaJeunesse T. S. (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J. Phycol. 37: 866–880

LaJeunesse T. C., Lambert G., Andersen R. A., Coffroth M. A., Galbraith D. W. (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J. Phycol. 41: 880–886

Lefèvre E., Roussel B., Amblard C., Sime-Ngando T. (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3: e2324

Le Gall L., Saunders G. W. (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol. 46: 374–389

Lenaers G., Scholin C., Bhaud Y., Saint-Hilaire D., Herzog M. (1991) A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J. Mol. Evol. 32: 53–63

Lin S., Zhang H., Hou Y., Zhuang Y., Miranda L. (2009) High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding. Appl. Environ. Microbiol. 75: 1279–1290

Lin S. (2011) Genomic understanding of dinoflagellates. Res. Microbiol. 162: 551–569

Litaker R. W., Vandersea M. W., Kibler S. R., Reece K. S., Stokes N. A., Lutzoni F. M., Yonish B. A., West M. A., Black M. N. D., Tester P. A. (2007) Recognizing dinoflagellate species using ITS rDNA sequences. J. Phycol. 43: 344–355

Logares R., Shalchian-Tabrizi K., Boltovskoy A., Rengefors K. (2007) Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions. Mol. Phylogen. Evol. 45: 887–903

López-García P., Vereshchaka A., Moreira D. (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9: 546–554

Lynn D., Pinheiro M. (2009) A survey of Polymerase Chain Reaction (PCR) amplification studies of unicellular protists using single-cell PCR. J. Eukaryot. Microbiol. 56: 406–412

McNally K. L., Govind N. S., Thomé P. E., Trench R. K. (1994) Small-subunit ribosomal DNA sequence analysis and a reconstruction of the inferred phylogeny among symbiotic dinoflagellates (Pyrrophyta). J. Phycol. 30: 316–329

Miller S. E. (2007) DNA barcoding and the renaissance of taxonomy. Proc. Nat. Acad. Sci. USA 104: 4775–4776

Newmaster S. G., Fazekas A. J., Ragupathy S. (2006) DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can. J. Bot. 84: 335–341

Pochon X., Putnam H. M., Burki F., Gates R. D. (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE 7: e29816

Richards T. A., Vepritskiy A. A., Gouliamova D. E., Nierzwicki-Bauer S. A. (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ. Microbiol. 7: 1413–1425

Rowan R., Whitney S. M., Fowler A., Yellowlees D. (1996) Rubisco in marine symbiotic dinoflagellates: Form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8: 539–553

Saldarriaga F., Taylor F. J. R., Keeling P. J., Cavalier-Smith T. (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J. Mol. Evol. 53: 204–213

Saldarriaga J. F., Taylor F. J. R., Cavalier-Smith T., Menden-Deuer S., Keeling P. J. (2004) Molecular data and the evolutionary history of dinoflagellates. Eur. J. Protistol. 40: 85–111

Saunders G. W., Hill D. R. A., Sexton J., Andersen R. A. (1997) Small subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In: Origins of Algae and Their Plastids, (Ed. D. Bhattacharya). Springer, New York, pp. 237–259

Schiller J. (1937) Dinoflagellatae (Peridineae) in monographischer Behandlung. Teil 2. In: Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, 589 pp.

Schiller J. (1955) Untersuchungen an den planktischen Protophyten des Neusiedlersees 1950–1954, I. Teil. Wissenschaftliche Arbeiten aus dem Burgenland 9: 1–66

Siano R., Montresor M., Probert I., Not F., de Vargas C. (2010) Pelagodinium gen. nov. and P. beii comb. nov., dinoflagellate symbiont of planktonic foraminifera. Protist 161: 385–399

Skovgaard A., Karpov S. A., Guillou L. (2012) The parasitic dinoflagellates Blastodinium spp. inhabiting the gut of marine, planktonic copepods: morphology, ecology and unrecognized species diversity. Frontiers Microbiol. 3: 305

Skovgaard A. (2014) Dirty tricks in the plankton: Diversity and role of marine parasitic protists. Acta Protozool. 53: 51–62

Skvortzov B. V. (1958) New and rare Flagellatae from Manchuria, Eastern Asia. Philip. J. Sci. 86: 139–202

Skvortzov B. V. (1968) New and little known Peridineae from northern Manchuria, China. Q. J. Taiwan Mus. 21: 79–114

Slapeta J., Moreira D., López-García P. (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc. R. Soc. B 272: 2073–2083

Sournia A. (1995) Red tide and toxic marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Harmful Marine Algal Blooms, (Eds. Lassus et al.). Lavoisier, Paris, pp. 103–112

Stern R. F., Andersen R. A., Jameson I., Küpper F. C., Coffroth M. A., Vaulot D., Le Gall F., Véron B., Brand J. J., Skelton H., Kasai F., Lilly E. L., Keeling P. J. (2012) Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS ONE 7: e42780

Takabayashi M., Santos S. R., Cook C. B. (2004) Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J. Phycol. 40: 160–164

Takano Y., Horiguchi T. (2006) Acquiring scanning electron microscopical, light microscopical and multiple gene sequence data from a single dinoflagellate cell. J. Phycol. 42: 251–256

Taylor F. J. R. (1987) The Biology of Dinoflagellates. Blackwell, Oxford, 785 pp.

Thessen A. E., Patterson D. J., Murray S. A. (2012) The taxonomic significance of species that have only been observed once: The genus Gymnodinium (Dinoflagellata) as an example. PLoS ONE 7: e44015

Yamaguchi A., Kawamura H., Horiguchi T. (2006) A further phylogenetic study of the heterotrophic dinoflagellate genus, Protoperidinium (Dinophyceae) based on small and large subunit ribosomal RNA gene sequences. Phycol. Res. 54: 317–329

Zhang H., Bhattacharya D., Lin S. (2007) A three-gene dinoflagellate phylogeny suggests monophyly of Prorocentrales and a basal position for Amphidinium and Heterocapsa. J. Mol. Evol. 65: 463–474

Information

Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 63 - 75

Article type: Original article

Authors

Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Maison de la Recherche en Environnement Naturel, 32 av. Foch, 62930 Wimereux, France

Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain

Published at: 2014

Article status: Open

Licence: None

Percentage share of authors:

Fernando Gómez (Author) - 100%

Article corrections:

-

Publication languages:

English