FAQ
Jagiellonian University logo

Photoresponse in the Ciliated Protozoan Colpoda cucullus

Publication date: 22.09.2017

Acta Protozoologica, 2017, Volume 56, Issue 1, pp. 1 - 7

https://doi.org/10.4467/16890027AP.17.001.6965

Authors

,
Noriyuki Kawano
Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
All publications →
,
Ryoji Funadani
Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
All publications →
,
Mikihiko Arikawa
Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
All publications →
,
Tetsuo Harada
Laboratory of Environmental Physiology, Faculty of Education, Kochi University, Kochi, Japan
All publications →
,
Futoshi Suizu
Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Japan
All publications →
,
Kou Matsuoka
Kochi Rehabilitation Institute, Tosa, Kochi, Japan
All publications →
Tatsuomi Matsuoka
Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
All publications →

Titles

Photoresponse in the Ciliated Protozoan Colpoda cucullus

Abstract

We found that vegetative cells of Colpoda cucullus Nag-1 accumulated in shaded areas of a container when grown in the laboratory and then formed resting cysts. The photodispersal (negative photoaccumulation) of C. cucullus was mediated, at least in part, by a difference in forward swimming velocity between the illuminated region and the shaded area of the Petri dish (motion slowed or stopped in the shaded area). When C. cucullus was stimulated by continuous light irradiation, the forward swimming velocity increased and reached a steady state within 10 s. When the light intensity decreased, the forward swimming velocity gradually decreased, and eventually returned to its original level for approximately 1 min. The action spectrum of the photokinetic response (steady-state swimming acceleration driven by continuous light stimulation) implies the involvement of blue light receptors.

References

Download references

Briggs W. R., Christie J. M. (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7: 204–210

Cadetti L., Marroni F., Marangoni R., Kuhlmann H.-W., Gioffré D., Colombetti G. (2000) Phototaxis in the ciliated protozoan Ophryoglena flava: dose–effect curves and action spectrum determination. J. Photochem. Photobiol57: 41–50

Checcucci G., Damato G., Ghetti F., Lenci F. (1993) Action spectra of the photophobic response of blue and red forms of Blepharisma japonicumPhotochem. Photobiol57: 686–689

Checcucci G., Shoemaker R. S., Bini E., Cerny R., Tao N., Hyon J.-S., Gioffré D., Ghetti F., Lenci F., Song P.-S. (1997) Chemical structure of blepharismin, photosensor pigment for Blepharisma japonicumJ. Am. Chem. Soc. 119: 5762–5763

Colombetti G., Marangoni R., Machemer H. (1992) Phototaxis in Fabrea salinaMed. Biol. Environm20: 93–100

Corliss J. O. and Esser S. C. (1974) Comments on the role of the cyst in the life cycle and survival of free-living protozoa. Trans. Amer. Micros. Soc93: 578–593

Giese A. C. (1973) BlepharismaThe Biology of a Light-Sensitive Protozoan. Stanford Univ. Press, Stanford, CA.

Häder D.-P., Helbling E. W., Williamson C. E., Worrest R. C. (2011) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10: 242–260

Funadani R., Sogame Y., Kojima, K., Takeshita T., Yamamoto K., Tsujizono T., Suizu F., Miyata S., Yayu K., Suzuki T., Arikawa M., Matsuoka T. (2016) Morphogenetic and molecular analyses of cyst wall components in the ciliated protozoan Colpoda cucullus Nag-1. FEMS Microbiol. Lett363, fnw203

Hinrichsen R., Peters C. (2013) Genetic dissection of the photophobic response of Paramecium tetraureliaProtist 164: 313–322

Iseki M., Matsunaga S., Murakami A., Ohno K., Shiga K., Yoshida K., Sugai M., Takahashi T., Hori T.Watanabe M. (2002) A blue-light activated adenylyl cyclase mediates photoavoidance in Euglena gracilisNature 415: 1047–1051

Iwatsuki K. (1992) Stentor coeruleus shows positive photokinesis. Photochem. Photobiol. 55: 469–471

Iwatsuki K., Naitoh Y. (1983) Behavioral responses in Paramecium multimicronucleatum to visible light. Photochem. Photobiol37: 415–419

Kraml M., Marwan W. (1983) Photomovement responses of the heterotrichous ciliate Blepharisma japonicumPhotochem. Photobiol. 37: 313–319

Kuhlmann H.-W. (1998) Photomovements in ciliated protozoa. Natur Wissenschaf85: 143–154

Maeda M., Naoki H., Matsuoka T., Kato Y., Kotsuki H., Utsumi K., Tanaka T. (1997) Blepharismin 1–5, novel photoreceptor from the unicellular organism Blepharisma japonicumTetrahedron Lett38: 7411–7414

Marangoni R., Preosti G., Colombetti G. (2000) Phototactic orientation mechanism in the ciliate Fabrea salina, as inferred from numerical simulations. J. Photochem. Photobiol54: 185–193

Matsuoka T. (1983a) Negative phototaxis in Blepharisma japonicumJ. Protozool. 30: 409–414

Matsuoka T. (1983b) Distribution of photoreceptors inducing ciliary reversal and swimming acceleration in Blepharisma japonicumJ. Exp. Zool225: 337–340

Matsuoka T., Kotsuki H., Muto Y. (2010) Molecular structure and multi-functions of photodynamic pigments in ciliated protozoans. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 1: 419–426

Matsuoka T., Mamiya R., Taneda K. (1990) Temperature-sensitive responses in BlepharismaJ. Protozool37: 323–328

Matsuoka T., Matsuoka S., Yamaoka Y., Kuriu T., Watanabe Y., Takayanagi M., Kato Y., Taneda K. (1992) Action spectra for step-up photophobic response in Blepharisma. J. Protozool39: 498–502

Nakaoka Y. and Oosawa F. (1977) Temperature sensitive behavior of Paramecium caudatumJ. Protozool24: 575–580

Noda Terazima M., Iio H., Harumoto T. (1999) Toxic and phototoxic properties of the protozoan pigments blepharismin and oxyblepharismin. Photochem. Photobiol. 69: 47–54

Scevoli P., Bisi F., Colombetti G., Ghetti F., Lenci F., Passarelli V. (1987) Photomotile responses of Blepharisma japonicum. I: Action spectra determination and time-resolved fluorescence of photoreceptor pigments. J. Photochem. Photobiol. 1: 75–84

Spitzner D., Höfle G., Klein I., Pohlan S., Ammermann D., Jaenicke L. (1998) On the structure of oxyblepharismin and ist formation from BlepharismaTetrahedron Lett39: 4003–4006

Wood D. C. (1976) Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleusPhotochem. Photobiol24: 261–266

Yu X., Liu H., Klejnot J., Lina C. (2010) The cryptochrome blue light receptors. Arabidopsis Book 8: e0135

Information

Information: Acta Protozoologica, 2017, Volume 56, Issue 1, pp. 1 - 7

Article type: Original article

Authors

Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan

Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan

Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan

Laboratory of Environmental Physiology, Faculty of Education, Kochi University, Kochi, Japan

Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Japan

Kochi Rehabilitation Institute, Tosa, Kochi, Japan

Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan

Published at: 22.09.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Noriyuki Kawano (Author) - 14%
Ryoji Funadani (Author) - 14%
Mikihiko Arikawa (Author) - 14%
Tetsuo Harada (Author) - 14%
Futoshi Suizu (Author) - 14%
Kou Matsuoka (Author) - 14%
Tatsuomi Matsuoka (Author) - 16%

Article corrections:

-

Publication languages:

English