FAQ
Jagiellonian University logo

New microsporidia, Glugea sardinellensis n sp (Microsporea, Glugeida) found in Sardinella aurita Valenciennes, 1847, collected off Tunisian coasts

Publication date: 20.12.2016

Acta Protozoologica, 2016, Volume 55, Issue 4, pp. 281 - 290

https://doi.org/10.4467/16890027AP.16.028.6097

Authors

,
Lamjed Mansour
Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
All publications →
,
Aouatef Thabet
Unité de Recherche de Biologie intégrative et Ecologie évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia
All publications →
,
Abdel Halim Harrath
Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
All publications →
,
Suliman Y. Al Omar
Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
All publications →
,
Ahmed Mukhtar
Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
All publications →
,
Shaban R. Sayed
Transmission Electron Microscope Unit, Research Centre, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
All publications →
Abdel-Azeem S. Abdel-Baki
Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Beni-Suef University, Egypt
All publications →

Titles

New microsporidia, Glugea sardinellensis n sp (Microsporea, Glugeida) found in Sardinella aurita Valenciennes, 1847, collected off Tunisian coasts

Abstract

A new microsporidia Glugea sardinellensis n. sp. found in the teleost fish Sardinella aurita Valenciennes collected from the Tunisian coasts. The parasite develops in a large xenomas measuring 1–16 mm in diameter and is generally visible with naked eye in the connective tissue around the pyloric caeca of the host. Xenoma were often rounded, but would be occasionally ovoid or irregular shape, generally creamy but rarely opaque, and filled with mature spores. The spores were unikaryotic pyriform measuring 5–5.5 (5.25±0.24) µm in length and 2.5–3 (2.75±0.24) µm in width. The posterior vacuole was large and occupied more than half of the spore. Ultrastructural study indicated that the mature spore has 13–14 coils of polar filament arranged in one layer, and a rough exospore. Intermediate stages were rare and randomly distributed in the xenoma. Merogonial and sporogonial stages were uni or binucleate. The plasma membrane surrounding the meront was irregular and indented. The mean prevalence was 18.3% and it varied according to season and locality. The distribution of prevalence according to fish size indicated that small fish were primarily affected. Phylogenetic analysis using the partial sequence of the SSU rDNA showed consistent association with species of the genusGlugea. The most closely related species was Glugea atherinae Berrebi, 1979 with 98.5% similarity.

References

Download references

Abdel-Baki A. A., Tamihi A. F., Al-Qahtani H. A., Al-Quraishy S., Mansour L. (2015) Glugea jazanensis sp. nov. infecting Lutjanus bohar in the Red Sea: ultrastructure and phylogeny. Dis. Aquat. Organ

Abdel-Baki A. S., Al-Quraishy S., Al-Qahtani H., Dkhil M. A., Azevedo C. (2012) Morphological and ultrastructural description of Pleistophora dammami sp. n. infecting the intestinal wall of Saurida undosquamis from the Arabian Gulf, Saudi Arabia. Parasitol. Res. 111: 413–418

Abdel-Baki A. S., Dkhil M. A., Al-Quraishy S. (2009) Seasonality and prevalence of Microsporidium sp. infecting lizard fish, Saurida undosquamis from the Arab Gulf. J. King Saud Univ. Sci21: 195–198

Azevedo C., Matos E. (2002) Fine structure of a new species, Loma myrophis (Phylum Microsporidia), parasite of the Amazonian fish Myrophis platyrhynchus (Teleostei, Ophichthidae). Eur. J. Protistol37: 445–452

Barker D. E., Khan R. A., Hooper R. (1994) Bioindicators of stress in winter flounder, Pleurowectes americanus, captured adjacent to a pulp and paper mill in St. George’s Bay, Newfoundland. Can. J. Fish. Aquat. Sci51: 2203–2209

Ben Khaled H., Ktari N., Ghorbel-Bellaaj O., Jridi M., Lassoued I., Nasri M. (2014) Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. J. Food Sci. Technol51: 622–633

Berrebi P. (1979) Ultrastructural studies of Glugea atherinae n. sp., Microsporidia parasite of Atherina boyeri Risso 1810 (Pisces, Teleostei) in the Languedoc and Provence Lagoons. Z. Parasitenkd60: 105–122

Berrebi P., Bouix G. (1980) Glugea atherinae Berrebi, 1979, Microsporidie parasite de l’Athérine Atherina boyeri Risso, 1810, des étangs côtiers méditerranéens. Evolution saisonnière et répartition géographique. Vie et Mileu 30: 253–225

Boely T. (1979) Biologie de deux espèces de sardinelles (S. aurita Valenciennes 1847 et S. maderensis Lowe 1841) des côtes sénégalaisesLa Pêche Maritime 1: 3–7

Chakraborty K., Joseph D. (2015) Production and characterization of refined oils obtained from Indian oil sardine (Sardinella longiceps). J. Agric. Food. Chem63: 998–1009

Chakraborty K., Joseph D. (2016) Concentration and sTabilization of C20-22n-3 polyunsaturated fatty acid esters from the oil of Sardinella longicepsFood Chem199: 828–837

Chen M., Power G. (1972) Infection of American smelt in Lake Ontario and Lake Erie with the microsporidian parasite Glugea hertwigi (Weissenberg). Can. J. Zool50: 1183–1188

Cury P., Fontana A. (1988) Compétition et stratégies démographiques comparées de deux espèces de sardinelles (Sardinella aurita et Sardinella maderensis) des côtes ouest-africaines. Aquat. Living Resour1: 165–180

Dyková I., Lom J. (1977) Tissue reaction to Glugea anomala infection in sticklebacks. J. Protozool. 24: 50A

Dyková I., Lom J., Egusa S. (1980) Tissue reaction to Glugea plecoglossi infection in its natural host, Plecoglussus altivelisFolia Parasitol. (Praha) 27: 213–216

Hall T. A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids Symp41: 95–98

Huang X., Madan A. (1999) CAP3: a DNA sequence assembly program. Genome Res9: 868–877

Kartas F. (1981) Les clupéidés de Tunisie. Caractéristiques biométriques et biologiques. Etude comparée des populations de l’Atlantique est et de la Méditerranée. Thèse de Doctorat d’Etat, Université de Tunis, Faculté des sciences, 608

Kent M. L. (2000) Marine net pen farming leads to infections with some unusual parasites. Int. J. Parasitol30: 321–326

Kent M. L., Dawe S. C., Speare D. J. (1999) Resistance to reinfection in chinook salmon Oncorhynchus tshawytscha to Loma salmonae (Microsporidia). Dis. Aquat. Organ37: 205–208

Khan R. A. (2004) Effect, distribution and prevalence of Glugea stephani (microspora) in winter flounder (Pleuronectes americanus) living near two pulp and paper mills in Newfoundland. J. Parasitol90: 229–233

Kim J. H., Ogawa K., Takahashi S., Wakabayashi H. (1997) Elevated water temperature treatment of ayu infected with Glugea plecoglossi: Apparent lack of involvement of antibody in the effect of the treatment. Fish Pathol32: 199–204

Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol16: 111–120

Larsson J. I. R. (1999) Identification of microsporidia. Acta Protozool38: 161–197

Legault R. O., Delisle C. (1967) Acute infection by Glugea hertwigi Weissenberg in young-of-year rainbow smelt Osmerus Eperlanus Mordax (Mitchill). Can. J. Zool45: 1291–1292

Leitch G. J., Ceballos C. (2008) Effects of host temperature and gastric and duodenal environments on microsporidia spore germination and infectivity of intestinal epithelial cells. Parasitol. Res104: 35–42

Lom J., Dyková I. (2005) Microsporidian xenomas in fish seen in wider perspective. Folia Parasitol. 52: 69–81

Lom J., Nilsen F. (2003) Fish microsporidia: fine structural diversity and phylogeny. Int. J. Parasitol33: 107–127

Lom J., Pekkarinen M. (1999) Ultrastructural observations on Loma acerinae (Jirovec, 1930) comb. nov. (Phylum Microsporidia). Acta Protozool38: 61–74

Lom J., Dyková I. (1992) Protozoan parasites of fishes. Elsevier, Amsterdam; New York

Mansour L., Ben Hassine O. K., Vivares C. P., Cornillot E. (2013) Spraguea lophii (Microsporidia) parasite of the teleost fish, Lophius piscatorius from Tunisian coasts: Evidence for an extensive chromosome length polymorphism. Parasitol. Int62: 66–74

Mansour L., Prensier G., Jemaa S. B., Hassine O. K., Méténier G., Vivarès C. P., Cornillot E. (2005) Description of a xenoma-inducing microsporidian, Microgemma tincae n. sp., parasite of the teleost fish Symphodus tinca from Tunisian coasts. Dis. Aquat. Organ65: 217–226

Matthews J. L., Brown A. M. V., Larison K., Bishop-Stewart J. K., Rogers P., Kent M. L. (2001) Pseudoloma neurophilia n. g., n. sp., a new microsporidium from the central nervous system of the zebrafish (Danio rerio). J. Eukaryot. Microbiol48: 227–233

Elizabeth McClymont H., Dunn A. M., Terry R. S., Rollinson D., Littlewood D. T., Smith J. E. (2005) Molecular data suggest that microsporidian parasites in freshwater snails are diverse. Int. J. Parasitol. 35: 1071–1078

Morrison C., Hoffman G. L., Sprague V. (1985) Glugea pimephales Fantham, Porter and Richardson, 1941, n. comb. (Microsporidia, Glugeidae) in the fathead minnow, Pimephales promelas. Can. J. Zool. 63:380-391

Nilsen F. (2000) Small subunit ribosomal DNA phylogeny of microsporidia with particular reference to genera that infect fish. J. Parasitol. 86: 128–133

Palenzuela O., Redondo M. J., Cali A., Takvorian P. M., Alonso-Naveiro M., Alvarez-Pellitero P., Sitjà-Bobadilla A. (2014) A new intranuclear microsporidium, Enterospora nucleophila n. sp., causing an emaciative syndrome in a piscine host (Sparus aurata), prompts the redescription of the family Enterocytozoonidae. Int. J. Parasitol44: 189–203

Pekcan-Hekim Z., Rahkonen R., Horppila J. (2005) Occurrence of the parasite Glugea hertwigi in young-of-the-year smelt in Lake Tuusulanjarvi. J. Fish Biol. 66: 583–588

Pushkar E. N. (1979) Effect of temperature of the water body on the sporogony of Thelohania fibrata (Microsporidia) parasitic in Odagmia Ornata (Simuliidae). Parazitologiya 13: 636–638

Sabwa D. M., Odindo M. O., Otieno W. A. (1984) Seasonal incidence of Amblyospora sp. (Thelohaniidae, Microsporidia) in Culex sitiens larvae at the Kenya Coast. Insect Sci. Appl5: 269–272

Sonia F. O. S., Hugo D. S., Edson S. S. J., Carlos E. A., Elisângela P. S. L., Cesar A. S. T. V. C., Marco T. A. G. (2010) Environmental monitoring of opportunistic protozoa in rivers and lakes in the neotropics based on yearly monitoring. Water Qual. Expos. Hea2: 97–104

Scarborough A., Weidner E. (1979) Field and laboratory studies of Glugea hertwigi (microsporida) in the rainbow smelt Osmerus mordaxBiol. Bull157: 334–343

Stentiford G. D., Feist S. W., Stone D. M., Bateman K. S., Dunn A. M. (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol29: 567–578

Strauss U., Human H., Gauthier L., Crewe R. M., Dietemann V., Pirk C. W. W. (2013) Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J. Invert. Pathol114: 45–52

Su Y., Feng J., Sun X., Jiang J., Guo Z., Ye L., Xu L. A. (2014) A new species of Glugea Thélohan, 1891 in the red sea bream Pagrus major (Temminck and Schlegel) (Teleostei: Sparidae) from China. Syst. Parasitol89: 175–183

Szentgyorgyi H., Blinow A., Eremeeva N., Luzyanin S., Grzes I. M., Woyciechowski M. (2011) Bumblebees (Bombidae) along pollution gradient – heavy metal accumulation, species diversity, and Nosema Bombi infection level. Pol. J. Ecol59: 599–610

Takvorian P. M., Cali A. (1984) Seasonal prevalence of the microsporidan, Glugea stephani (Hagenmuller), in winter flounder, Pseudopleuronectes americanus (Walbaum), from the New-York New-Jersey Lower Bay complex. J. Fish Biol. 24: 655–663

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol28: 2731–2739

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882

Vagelli A., Parama A., Sanmartin M. L., Leiro J. (2005) Glugea vincentiae n. sp (Microsporidia: Glugeidae) infecting the Australian marine fish Vincentia conspersa (Teleostei: Apogonidae). J. Parasitol. 91: 152–157

Vávra J., Lukeš J. (2013). Microsporidia and ‘the art of living together’. Adv. Parasitol. 82: 253–319

Vethaak A. D. (1992) Diseases of flounder (Platichthys flesus L) in the Dutch Wadden Sea, and their relation to stress factors. Neth. J. Sea Res29: 257–272

Vinni M., Lappalainen J., Malinen T., Peltonen H. (2004) Seasonal bottlenecks in diet shifts and growth of smelt in a large eutrophic lake. J. Fish Biol64: 567–579

Vossbrinck C. R., Debrunner-Vossbrinck B. A. (2005) Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitol52: 131–142

Weigl S., Korner H., Petrusek A., Seda J., Wolinska J. (2012) Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology 139: 870–880

Information

Information: Acta Protozoologica, 2016, Volume 55, Issue 4, pp. 281 - 290

Article type: Original article

Authors

Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Unité de Recherche de Biologie intégrative et Ecologie évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia

Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Transmission Electron Microscope Unit, Research Centre, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Beni-Suef University, Egypt

Published at: 20.12.2016

Article status: Open

Licence: None

Percentage share of authors:

Lamjed Mansour (Author) - 14%
Aouatef Thabet (Author) - 14%
Abdel Halim Harrath (Author) - 14%
Suliman Y. Al Omar (Author) - 14%
Ahmed Mukhtar (Author) - 14%
Shaban R. Sayed (Author) - 14%
Abdel-Azeem S. Abdel-Baki (Author) - 16%

Article corrections:

-

Publication languages:

English