FAQ
Jagiellonian University logo

Growth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes

Publication date: 30.12.2019

Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 217 - 233

https://doi.org/10.4467/16890027AP.19.019.12021

Authors

,
Giulia M. Ribeiro
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
All publications →
,
Paulo Inácio Prado
LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
All publications →
,
Renato Mendes Coutinho
Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Av. dos Estados, 5001, Santo André, Brazil
All publications →
,
Marina Costa Rillo
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
All publications →
,
Samuel Pereira Junior
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
All publications →
,
Alfredo L. Porfírio-Sousa
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
All publications →
Daniel J. G. Lahr
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
All publications →

Titles

Growth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes

Abstract

Coexistence usually are exceeding the explicable rate by competitive exclusion principle. Since the pioneer Gause, many studies have used protist microcosm systems to study competitive exclusion. We explored a two-species system with the testate-amoebae: (Arcella intermedia and Pyxidicula operculata), where competitive exclusion is expected to occur. We determined their growth curves individually and under competitive interaction. We used a state-space model to represent system dynamics and calculated posterior population sizes simulating competition dynamics. Contrarily to our expectation, Arcella and Pyxidicula showed similar growth rates (1.37 and 1.46 days–1 respectively) and only different carrying capacity (1,997 and 25,108 cells cm–2 respectively). The maximum number of cells of both species when growing in competition was much lower if compared to the monospecific cultures (in average, 73% and 80% less for Arcella and Pyxidicula respectively). However, our competition experiments always resulted in coexistence. According to the models, the drop in growth rates and stochasticity mainly explains our coexistence results. We propose that a context of ephemeral resources can explain these results. Additionally, we propose generating factors of stochasticity as intraspecific variation, small population effects, toxicity of waste products and influence of the bacterial community.

References

Download references

Altermatt F., Bieger A., Carrara F., Rinaldo A., and Holyoak M. (2011) Effects of connectivity and recurrent local disturbances on community structure and population density in experimental metacommunities. PLoS One 6: e19525

Altermatt F., Fronhofer E. A., Garnier A., Giometto A., Hammes F., Klecka J., Legrand D., Maechler E., Massie T. M., Pennekamp F. et al. (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6: 218–231

Amarasekare P. (2000) The geometry of coexistence. Biol. J. Linn. Soc. 71: 1–31

Barraclough T. G. (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48

Bastolla U., Lassig M., Manrubia S. C., and Valleriani A. (2005). Biodiversity in model ecosystems, I: coexistence conditions for competing species. J. Theor. Biol. 235: 521–530

Beyers R. J. and Odum H. T. (2012) Ecological microcosms. SSBM

Cadotte M. W. (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88: 823–829

Cadotte M. W., Mai D. V., Jantz S., Collins M. D., Keele M., and Drake J. A. (2006) On testing the competition-colonization trade-off in a multispecies assemblage. Am. Nat. 168: 704–709

Carrara F., Altermatt F., Rodriguez-Iturbe I., and Rinaldo A. (2012)

Dendritic connectivity controls biodiversity patterns in experimental metacommunities. PNAS 109: 5761–5766

Castilho L., Moraes A., Augusto E., and Butler M. (2008) Animal cell technology: from biopharmaceuticals to gene therapy. Garland Science

Chesson P. (2000) Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366

Couradeau E., Benzerara K., Moreira D., Gerard E., Kázmierczak J., Tavera R., and Lóopés-García P. (2011) Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake Alchichica (Mexico). PLoS One 6: e28767

Craig MacLean R., Dickson A., and Bell G. (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol. Lett. 8: 38–46

DeLong J. P., Okie J. G., Moses M. E., Sibly R. M., and Brown J. H. (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107: 12941–12945

Duval D., Demangel C., Miossec S., and Geahel I. (1992) Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma 11: 311–322

Fenchel T. (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326

Fox J. W. and Smith D. C. (1997) Variable outcomes of protistrotifer competition in laboratory microcosms. Oikos, 489–495

Fronhofer E. A., Klecka J., Melián C. J., and Altermatt F. (2015) Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18: 954–963

Gause G. F. (1934) The struggle for existence. Soil Science 41: 159

Gerisch G., Fromm H., Huesgen A., and Wick U. (1975) Control of cell-contact sites by cyclic amp pulses in differentiating Dictyostelium cells. Nature 255: 547

Giometto A., Altermatt F., Carrara F., Maritan A., and Rinaldo A. (2013) Scaling body size fluctuations. PNAS 110: 4646–4650

Giometto A., Rinaldo A., Carrara F., and Altermatt F. (2014) Emerging predictable features of replicated biological invasion fronts. PNAS 111: 297–301

Griffiths J. I., Warren P. H., and Childs D. Z. (2015) Multiple environmental changes interact to modify species dynamics and invasion rates. Oikos 124: 458–468

Haddad N. M., Holyoak M., Mata T. M., Davies K. F., Melbourne B. A., and Preston K. (2008) Species traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11: 348–356

Hart S. P., Schreiber S. J., and Levine J. M. (2016) How variation between individuals affects species coexistence. Ecol. Lett. 19: 825–838

Hornik K., Leisch F., and Zeileis A. (2003) Jags: A program for analysis of Bayesian graphical models using Gibbs sampling. DSC, 2, 1–1

Hostetler J. A. and Chandler R. B. (2015) Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology 96: 1713–1723

Huang W., de Araujo Campos P. R., de Oliveira V. M., and Ferreira F. F. (2016) A resource-based game theoretical approach for the paradox of the plankton. PeerJ 4: e2329

Huete-Ortega M., Cermeño P., Calvo-Díaz A., and Marañón E. (2012) Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. R. Soc. B 279: 1815–1823

Huston M. (1979) A general hypothesis of species diversity. Am. Nat. 113: 81–101

Jeremy W., Peter J., et al. (2001) Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70: 80–90

Jiang L. and Morin P. J. (2007) Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76: 660–668

Kanarek A. R. and Webb C. T. (2010) Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3: 122–135

Kayser H. (1979) Growth interactions between marine dinoflagellates in multi-species culture experiments. Mar. Biol. 52: 357–369

Kempes C. P., Dutkiewicz S., and Follows M. J. (2012) Growth, metabolic partitioning, and the size of microorganisms. PNAS 109: 495–500

Kokkoris G. D., Jansen V. A., Loreau M., and Troumbis A. Y. (2002) Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71: 362–371

Konijn T. M., Van De Meene J., Bonner J. T., and Barkley D. S. (1967) The acrasin activity of adenosine-3’, 5’-cyclic phosphate. PNAS 58: 1152–1154

Kosakyan A., Gomaa F., Lara E., and Lahr D. J. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. Eur. J. Protistol. 55: 105–117

Loomis W. F. (2014) Cell signaling during development of dictyostelium. Dev. Biol. 391: 1–16

López-García P. and Moreira D. (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159: 67–73

Lotka A. J. (1920) Analytical note on certain rhythmic relations in organic systems. PNAS 6: 410–415

Lymperopoulou D. S., Kormas K. A., and Karagouni A. D. (2012) Variability of prokaryotic community structure in a drinking water reservoir (Marathonas, Greece). Microb. Environ. 27: 1–8

Mechler E. and Altermatt F. (2012) Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms. PLoS One 7: e45400

Meisterfeld R. (2000a) Order Arcellinida Kent, 1880. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). 2nd edition. Society of Protozoologists, Allen Press, Lawrence, Kansas, 827–860

Menden-Deuer S. and Rowlett J. (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J. R. Soc. Interface 11: 20140031

Michod R. E. (2007) Evolution of individuality during the transition from unicellular to multicellular life. PNAS 104 (suppl 1): 8613–8618

Muller J. P., Hauzy C., and Hulot F. D. (2012) Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. J. Anim. Ecol. 81: 222–232

Nakagawa S., Johnson P. C., and Schielzeth H. (2017) The coefficient of determination r2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14: 20170213

Nealson K. and Hastings J. W. (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43: 496

Passarge J., Hol S., Escher M., and Huisman J. (2006) Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monogr. 76: 57–72

Petchey O. L., McPhearson P. T., Casey T. M., and Morin P. J. (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402: 69

Pianka E. R. (2011) Evolutionary ecology. Eric R. Pianka Rosindell J., Hubbell S. P., and Etienne R. S. (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26: 340–348.

Saleem M., Fetzer I., Harms H., and Chatzinotas A. (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J. 7: 1912

Schoener T. W. (1976) Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10: 309–333

Stoffel M. A., Nakagawa S., and Schielzeth H. (2017) rptr: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8: 1639–1644

Su Y.-S. and Yajima M. (2015) R2jags: Using R to Run ’JAGS’. R package version 0.5-7

Svanback R. and Bolnick D. I. (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274: 839–844

Verhulst P. (1845) Recherches mathmatiques sur la loi d’accroissement de la population. Nouv. Mem. Acad. R. Sci. Bruxelles 18: 14–54

Violle C., Pu Z., and Jiang L. (2010) Experimental demonstration of the importance of competition under disturbance. PNAS 107: 12925–12929

Violle C., Nemergut D. R., Pu Z., and Jiang L. (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett 14: 782–787

Volterra V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature 119: 12

Waters C. M. and Bassler B. L. (2005) Quorum sensing: cell-tocell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346

Weisse T. and Stadler P. (2006) Effect of ph on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708–171

Information

Information: Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 217 - 233

Article type: Original article

Authors

Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil

LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil

Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Av. dos Estados, 5001, Santo André, Brazil

Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK

Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil

Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil

Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil

Published at: 30.12.2019

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Giulia M. Ribeiro (Author) - 14.28%
Paulo Inácio Prado (Author) - 14.28%
Renato Mendes Coutinho (Author) - 14.28%
Marina Costa Rillo (Author) - 14.28%
Samuel Pereira Junior (Author) - 14.28%
Alfredo L. Porfírio-Sousa (Author) - 14.28%
Daniel J. G. Lahr (Author) - 14.28%

Article corrections:

-

Publication languages:

English