Growth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEGrowth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes
Publication date: 30.12.2019
Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 217 - 233
https://doi.org/10.4467/16890027AP.19.019.12021Authors
Growth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes
Coexistence usually are exceeding the explicable rate by competitive exclusion principle. Since the pioneer Gause, many studies have used protist microcosm systems to study competitive exclusion. We explored a two-species system with the testate-amoebae: (Arcella intermedia and Pyxidicula operculata), where competitive exclusion is expected to occur. We determined their growth curves individually and under competitive interaction. We used a state-space model to represent system dynamics and calculated posterior population sizes simulating competition dynamics. Contrarily to our expectation, Arcella and Pyxidicula showed similar growth rates (1.37 and 1.46 days–1 respectively) and only different carrying capacity (1,997 and 25,108 cells cm–2 respectively). The maximum number of cells of both species when growing in competition was much lower if compared to the monospecific cultures (in average, 73% and 80% less for Arcella and Pyxidicula respectively). However, our competition experiments always resulted in coexistence. According to the models, the drop in growth rates and stochasticity mainly explains our coexistence results. We propose that a context of ephemeral resources can explain these results. Additionally, we propose generating factors of stochasticity as intraspecific variation, small population effects, toxicity of waste products and influence of the bacterial community.
Altermatt F., Bieger A., Carrara F., Rinaldo A., and Holyoak M. (2011) Effects of connectivity and recurrent local disturbances on community structure and population density in experimental metacommunities. PLoS One 6: e19525
Altermatt F., Fronhofer E. A., Garnier A., Giometto A., Hammes F., Klecka J., Legrand D., Maechler E., Massie T. M., Pennekamp F. et al. (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6: 218–231
Amarasekare P. (2000) The geometry of coexistence. Biol. J. Linn. Soc. 71: 1–31
Barraclough T. G. (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48
Bastolla U., Lassig M., Manrubia S. C., and Valleriani A. (2005). Biodiversity in model ecosystems, I: coexistence conditions for competing species. J. Theor. Biol. 235: 521–530
Beyers R. J. and Odum H. T. (2012) Ecological microcosms. SSBM
Cadotte M. W. (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88: 823–829
Cadotte M. W., Mai D. V., Jantz S., Collins M. D., Keele M., and Drake J. A. (2006) On testing the competition-colonization trade-off in a multispecies assemblage. Am. Nat. 168: 704–709
Carrara F., Altermatt F., Rodriguez-Iturbe I., and Rinaldo A. (2012)
Dendritic connectivity controls biodiversity patterns in experimental metacommunities. PNAS 109: 5761–5766
Castilho L., Moraes A., Augusto E., and Butler M. (2008) Animal cell technology: from biopharmaceuticals to gene therapy. Garland Science
Chesson P. (2000) Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366
Couradeau E., Benzerara K., Moreira D., Gerard E., Kázmierczak J., Tavera R., and Lóopés-García P. (2011) Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake Alchichica (Mexico). PLoS One 6: e28767
Craig MacLean R., Dickson A., and Bell G. (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol. Lett. 8: 38–46
DeLong J. P., Okie J. G., Moses M. E., Sibly R. M., and Brown J. H. (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107: 12941–12945
Duval D., Demangel C., Miossec S., and Geahel I. (1992) Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma 11: 311–322
Fenchel T. (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326
Fox J. W. and Smith D. C. (1997) Variable outcomes of protistrotifer competition in laboratory microcosms. Oikos, 489–495
Fronhofer E. A., Klecka J., Melián C. J., and Altermatt F. (2015) Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18: 954–963
Gause G. F. (1934) The struggle for existence. Soil Science 41: 159
Gerisch G., Fromm H., Huesgen A., and Wick U. (1975) Control of cell-contact sites by cyclic amp pulses in differentiating Dictyostelium cells. Nature 255: 547
Giometto A., Altermatt F., Carrara F., Maritan A., and Rinaldo A. (2013) Scaling body size fluctuations. PNAS 110: 4646–4650
Giometto A., Rinaldo A., Carrara F., and Altermatt F. (2014) Emerging predictable features of replicated biological invasion fronts. PNAS 111: 297–301
Griffiths J. I., Warren P. H., and Childs D. Z. (2015) Multiple environmental changes interact to modify species dynamics and invasion rates. Oikos 124: 458–468
Haddad N. M., Holyoak M., Mata T. M., Davies K. F., Melbourne B. A., and Preston K. (2008) Species traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11: 348–356
Hart S. P., Schreiber S. J., and Levine J. M. (2016) How variation between individuals affects species coexistence. Ecol. Lett. 19: 825–838
Hornik K., Leisch F., and Zeileis A. (2003) Jags: A program for analysis of Bayesian graphical models using Gibbs sampling. DSC, 2, 1–1
Hostetler J. A. and Chandler R. B. (2015) Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology 96: 1713–1723
Huang W., de Araujo Campos P. R., de Oliveira V. M., and Ferreira F. F. (2016) A resource-based game theoretical approach for the paradox of the plankton. PeerJ 4: e2329
Huete-Ortega M., Cermeño P., Calvo-Díaz A., and Marañón E. (2012) Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. R. Soc. B 279: 1815–1823
Huston M. (1979) A general hypothesis of species diversity. Am. Nat. 113: 81–101
Jeremy W., Peter J., et al. (2001) Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70: 80–90
Jiang L. and Morin P. J. (2007) Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76: 660–668
Kanarek A. R. and Webb C. T. (2010) Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3: 122–135
Kayser H. (1979) Growth interactions between marine dinoflagellates in multi-species culture experiments. Mar. Biol. 52: 357–369
Kempes C. P., Dutkiewicz S., and Follows M. J. (2012) Growth, metabolic partitioning, and the size of microorganisms. PNAS 109: 495–500
Kokkoris G. D., Jansen V. A., Loreau M., and Troumbis A. Y. (2002) Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71: 362–371
Konijn T. M., Van De Meene J., Bonner J. T., and Barkley D. S. (1967) The acrasin activity of adenosine-3’, 5’-cyclic phosphate. PNAS 58: 1152–1154
Kosakyan A., Gomaa F., Lara E., and Lahr D. J. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. Eur. J. Protistol. 55: 105–117
Loomis W. F. (2014) Cell signaling during development of dictyostelium. Dev. Biol. 391: 1–16
López-García P. and Moreira D. (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159: 67–73
Lotka A. J. (1920) Analytical note on certain rhythmic relations in organic systems. PNAS 6: 410–415
Lymperopoulou D. S., Kormas K. A., and Karagouni A. D. (2012) Variability of prokaryotic community structure in a drinking water reservoir (Marathonas, Greece). Microb. Environ. 27: 1–8
Mechler E. and Altermatt F. (2012) Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms. PLoS One 7: e45400
Meisterfeld R. (2000a) Order Arcellinida Kent, 1880. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). 2nd edition. Society of Protozoologists, Allen Press, Lawrence, Kansas, 827–860
Menden-Deuer S. and Rowlett J. (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J. R. Soc. Interface 11: 20140031
Michod R. E. (2007) Evolution of individuality during the transition from unicellular to multicellular life. PNAS 104 (suppl 1): 8613–8618
Muller J. P., Hauzy C., and Hulot F. D. (2012) Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. J. Anim. Ecol. 81: 222–232
Nakagawa S., Johnson P. C., and Schielzeth H. (2017) The coefficient of determination r2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14: 20170213
Nealson K. and Hastings J. W. (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43: 496
Passarge J., Hol S., Escher M., and Huisman J. (2006) Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monogr. 76: 57–72
Petchey O. L., McPhearson P. T., Casey T. M., and Morin P. J. (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402: 69
Pianka E. R. (2011) Evolutionary ecology. Eric R. Pianka Rosindell J., Hubbell S. P., and Etienne R. S. (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26: 340–348.
Saleem M., Fetzer I., Harms H., and Chatzinotas A. (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J. 7: 1912
Schoener T. W. (1976) Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10: 309–333
Stoffel M. A., Nakagawa S., and Schielzeth H. (2017) rptr: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8: 1639–1644
Su Y.-S. and Yajima M. (2015) R2jags: Using R to Run ’JAGS’. R package version 0.5-7
Svanback R. and Bolnick D. I. (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274: 839–844
Verhulst P. (1845) Recherches mathmatiques sur la loi d’accroissement de la population. Nouv. Mem. Acad. R. Sci. Bruxelles 18: 14–54
Violle C., Pu Z., and Jiang L. (2010) Experimental demonstration of the importance of competition under disturbance. PNAS 107: 12925–12929
Violle C., Nemergut D. R., Pu Z., and Jiang L. (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett 14: 782–787
Volterra V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature 119: 12
Waters C. M. and Bassler B. L. (2005) Quorum sensing: cell-tocell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346
Weisse T. and Stadler P. (2006) Effect of ph on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708–171
Information: Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 217 - 233
Article type: Original article
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Av. dos Estados, 5001, Santo André, Brazil
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
Published at: 30.12.2019
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 1050
Number of downloads: 1361