Altermatt F., Bieger A., Carrara F., Rinaldo A., and Holyoak M. (2011) Effects of connectivity and recurrent local disturbances on community structure and population density in experimental metacommunities. PLoS One 6: e19525 Altermatt F., Fronhofer E. A., Garnier A., Giometto A., Hammes F., Klecka J., Legrand D., Maechler E., Massie T. M., Pennekamp F. et al. (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6: 218–231 Amarasekare P. (2000) The geometry of coexistence. Biol. J. Linn. Soc. 71: 1–31 Barraclough T. G. (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48 Bastolla U., Lassig M., Manrubia S. C., and Valleriani A. (2005). Biodiversity in model ecosystems, I: coexistence conditions for competing species. J. Theor. Biol. 235: 521–530 Beyers R. J. and Odum H. T. (2012) Ecological microcosms. SSBM Cadotte M. W. (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88: 823–829 Cadotte M. W., Mai D. V., Jantz S., Collins M. D., Keele M., and Drake J. A. (2006) On testing the competition-colonization trade-off in a multispecies assemblage. Am. Nat. 168: 704–709 Carrara F., Altermatt F., Rodriguez-Iturbe I., and Rinaldo A. (2012) Dendritic connectivity controls biodiversity patterns in experimental metacommunities. PNAS 109: 5761–5766 Castilho L., Moraes A., Augusto E., and Butler M. (2008) Animal cell technology: from biopharmaceuticals to gene therapy. Garland Science Chesson P. (2000) Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366 Couradeau E., Benzerara K., Moreira D., Gerard E., Kázmierczak J., Tavera R., and Lóopés-García P. (2011) Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake Alchichica (Mexico). PLoS One 6: e28767 Craig MacLean R., Dickson A., and Bell G. (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol. Lett. 8: 38–46 DeLong J. P., Okie J. G., Moses M. E., Sibly R. M., and Brown J. H. (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107: 12941–12945 Duval D., Demangel C., Miossec S., and Geahel I. (1992) Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma 11: 311–322 Fenchel T. (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326 Fox J. W. and Smith D. C. (1997) Variable outcomes of protistrotifer competition in laboratory microcosms. Oikos, 489–495 Fronhofer E. A., Klecka J., Melián C. J., and Altermatt F. (2015) Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18: 954–963 Gause G. F. (1934) The struggle for existence. Soil Science 41: 159 Gerisch G., Fromm H., Huesgen A., and Wick U. (1975) Control of cell-contact sites by cyclic amp pulses in differentiating Dictyostelium cells. Nature 255: 547 Giometto A., Altermatt F., Carrara F., Maritan A., and Rinaldo A. (2013) Scaling body size fluctuations. PNAS 110: 4646–4650 Giometto A., Rinaldo A., Carrara F., and Altermatt F. (2014) Emerging predictable features of replicated biological invasion fronts. PNAS 111: 297–301 Griffiths J. I., Warren P. H., and Childs D. Z. (2015) Multiple environmental changes interact to modify species dynamics and invasion rates. Oikos 124: 458–468 Haddad N. M., Holyoak M., Mata T. M., Davies K. F., Melbourne B. A., and Preston K. (2008) Species traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11: 348–356 Hart S. P., Schreiber S. J., and Levine J. M. (2016) How variation between individuals affects species coexistence. Ecol. Lett. 19: 825–838 Hornik K., Leisch F., and Zeileis A. (2003) Jags: A program for analysis of Bayesian graphical models using Gibbs sampling. DSC, 2, 1–1 Hostetler J. A. and Chandler R. B. (2015) Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology 96: 1713–1723 Huang W., de Araujo Campos P. R., de Oliveira V. M., and Ferreira F. F. (2016) A resource-based game theoretical approach for the paradox of the plankton. PeerJ 4: e2329 Huete-Ortega M., Cermeño P., Calvo-Díaz A., and Marañón E. (2012) Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. R. Soc. B 279: 1815–1823 Huston M. (1979) A general hypothesis of species diversity. Am. Nat. 113: 81–101 Jeremy W., Peter J., et al. (2001) Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70: 80–90 Jiang L. and Morin P. J. (2007) Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76: 660–668 Kanarek A. R. and Webb C. T. (2010) Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3: 122–135 Kayser H. (1979) Growth interactions between marine dinoflagellates in multi-species culture experiments. Mar. Biol. 52: 357–369 Kempes C. P., Dutkiewicz S., and Follows M. J. (2012) Growth, metabolic partitioning, and the size of microorganisms. PNAS 109: 495–500 Kokkoris G. D., Jansen V. A., Loreau M., and Troumbis A. Y. (2002) Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71: 362–371 Konijn T. M., Van De Meene J., Bonner J. T., and Barkley D. S. (1967) The acrasin activity of adenosine-3’, 5’-cyclic phosphate. PNAS 58: 1152–1154 Kosakyan A., Gomaa F., Lara E., and Lahr D. J. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. Eur. J. Protistol. 55: 105–117 Loomis W. F. (2014) Cell signaling during development of dictyostelium. Dev. Biol. 391: 1–16 López-García P. and Moreira D. (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159: 67–73 Lotka A. J. (1920) Analytical note on certain rhythmic relations in organic systems. PNAS 6: 410–415 Lymperopoulou D. S., Kormas K. A., and Karagouni A. D. (2012) Variability of prokaryotic community structure in a drinking water reservoir (Marathonas, Greece). Microb. Environ. 27: 1–8 Mechler E. and Altermatt F. (2012) Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms. PLoS One 7: e45400 Meisterfeld R. (2000a) Order Arcellinida Kent, 1880. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). 2nd edition. Society of Protozoologists, Allen Press, Lawrence, Kansas, 827–860 Menden-Deuer S. and Rowlett J. (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J. R. Soc. Interface 11: 20140031 Michod R. E. (2007) Evolution of individuality during the transition from unicellular to multicellular life. PNAS 104 (suppl 1): 8613–8618 Muller J. P., Hauzy C., and Hulot F. D. (2012) Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. J. Anim. Ecol. 81: 222–232 Nakagawa S., Johnson P. C., and Schielzeth H. (2017) The coefficient of determination r2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14: 20170213 Nealson K. and Hastings J. W. (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43: 496 Passarge J., Hol S., Escher M., and Huisman J. (2006) Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monogr. 76: 57–72 Petchey O. L., McPhearson P. T., Casey T. M., and Morin P. J. (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402: 69 Pianka E. R. (2011) Evolutionary ecology. Eric R. Pianka Rosindell J., Hubbell S. P., and Etienne R. S. (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26: 340–348. Saleem M., Fetzer I., Harms H., and Chatzinotas A. (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J. 7: 1912 Schoener T. W. (1976) Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10: 309–333 Stoffel M. A., Nakagawa S., and Schielzeth H. (2017) rptr: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8: 1639–1644 Su Y.-S. and Yajima M. (2015) R2jags: Using R to Run ’JAGS’. R package version 0.5-7 Svanback R. and Bolnick D. I. (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274: 839–844 Verhulst P. (1845) Recherches mathmatiques sur la loi d’accroissement de la population. Nouv. Mem. Acad. R. Sci. Bruxelles 18: 14–54 Violle C., Pu Z., and Jiang L. (2010) Experimental demonstration of the importance of competition under disturbance. PNAS 107: 12925–12929 Violle C., Nemergut D. R., Pu Z., and Jiang L. (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett 14: 782–787 Volterra V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature 119: 12 Waters C. M. and Bassler B. L. (2005) Quorum sensing: cell-tocell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346 Weisse T. and Stadler P. (2006) Effect of ph on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708–171