Exploring the diversity and ecology of testate amoebae in West Siberian peatlands
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEExploring the diversity and ecology of testate amoebae in West Siberian peatlands
Publication date: 22.09.2017
Acta Protozoologica, 2017, Volume 56, Issue 1, pp. 59 - 70
https://doi.org/10.4467/16890027AP.17.005.6969Authors
Exploring the diversity and ecology of testate amoebae in West Siberian peatlands
Testate amoebae are valued for their functional significance and application as indicators of environmental conditions, particularly in peatland ecosystems. Research on testate amoebae has increased dramatically in recent years but there are still large parts of the world which have seen very little research. Here we consider testate amoeba communities of the West Siberian Lowland, the world’s largest peatland region and therefore one of the largest potential habitats for testate amoebae. Extensive sampling identified 89 taxa and showed that testate amoeba communities are structured by their physical and biological environment. We identified significant relationships between amoeba communities and both moisture content and vegetation composition. Despite the assemblages containing many widely-distributed species, some taxa considered typical of peatlands (e.g. Archerella flavum and Hyalosphenia papilio) were comparatively rare or absent, paralleling findings further south in Asia. We suggest that testate amoebae in this region deserve further study and may have useful applications in palaeoecological reconstruction and as bioindicators of the impacts of oil and gas extraction.
Amesbury M. J., Mallon G., Charman D. J., Hughes P. D. M., Booth R. K., Daley T. J., Garneau M. (2013) Statistical testing of a new testate amoeba–based transfer function for water–table depth reconstruction on ombrotrophic peatlands in north–eastern Canada and Maine, United States. J. Quaternary Sci. 28: 27–39
Amesbury M. J., Swindles G. T., Bobrov A., Charman D. J., Holden J.,
Lamentowicz M., Mallon G., Mazei Y., Mitchell E. A., Payne R. J. (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Sci. Rev. 152: 132–151
Avel E., Pensa M. (2013) Preparation of testate amoebae samples affects water table depth reconstructions in peatland palaeoecological studies. Estonian J. Earth Sci. 62: 113–119
Bamforth S. S. (2008) Protozoa of biological soil crusts of a cool desert in Utah. J. Arid Environ. 72: 722–729
Bobrov A. (2003) Historical dynamics of lake and bog ecosystems and succession of testate amoebae (Testacea, Protozoa). Zoologicheskiy Zhurnal. 82: 215–223
Bobrov A., Qin Y., Wilkinson D. M. (2015) Latitudinal diversity gradients in free-living microorganisms-Hoogenraadia a key genus in testate amoebae biogeography. Acta Protozool. 54: 1
Bokova U., Babenko A., Temnikova I. (2015) Ecological peculiarities of the testate amoebae population in the Middle Ob flood plain. Int. J. Environ Studies. 72: 406–414
Booth R. K. (2001) Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands. 21: 564–576
Booth R. K. (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J. Paleolimnol. 28: 329–348
Booth R. K. (2008) Testate amoebae as proxies for mean annual water–table depth in Sphagnum–dominated peatlands of North America. J. Quaternary Sci. 23: 43–57
Bray J. R., Curtis J. T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349
Charman D. J. (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J. R. Soc. N. Z. 27: 465–483
Charman D. J. (1999) Testate amoebae and the fossil record: issues in biodiversity. J. Biogeogr. 26: 89–96
Charman D. J., Blundell A. (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J. Quaternary Sci. 22: 209–221
Charman D. J., Warner B. G. (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in northeastern Ontario. Can. J. Zool. 70: 2474–2482
Charman D. J., Warner B. G. (1997) Ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: modelling hydrological relationships for palaeoenvironmental reconstruction. Ecoscience. 4: 555–562
Clarke K. R. (1993) Non–parametric multivariate analyses of changes in community structure. Aus. J. Ecol. 18: 117–143.
DeJong T. (1975) A comparison of three diversity indices based on their components of richness and evenness. Oikos. 26: 222–227
Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998a) Short-term effect of nitrogen enrichment on the microbial communities of a peatland, in: Amiard J. C., Le Rouzic B., Berthet B., Bertru G. (Eds.), Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces: Proceedings of the Third International Joint Conference on Limnology and Oceanography held in Nantes, France, October 1996. Springer Netherlands, Dordrecht, pp. 111–119
Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998b) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb. Ecol. 35: 83–93
International Peat Society (2017) Global Peat Resources by Country. http://www.peatsociety.org/peatlands-and-peat/global-peat-resources-country (accessed 1/5/17)
Jassey V. E. J., Shimano S., Dupuy C., Toussaint M. L., Gilbert D. (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13 C and 15 Nisotopic analyses. Protist. 163: 451–464
Jung W. (1936) Thecamoeben ursprünglicher lebender deutscher Hochmoore. Abh. Landesmus Westfalen. 7: 3–87
Kartashev A. G., Smolina T. V. (2008) Impact of oil on soil testate amoebae (Arcellinida, Euglyphida) in a field experiment. Zoologicheskiy Zhurnal. 87: 1027–1033
Kur’ina I. V. (2011) Ecology of testate amoebae as hydrological regime indicators in oligotrophic peatlands in the southern taiga of Western Siberia. Izvesti Penzenskogo Gosudarstvennogo Pedagogicheskogo Universiteta. 25: 368–375
Kur’ina I. V., Preis Y. I., Bobrov A. (2010) Testate amoebae inhabiting middle taiga bogs in Western Siberia. Biol. Bull. 37: 357–362
Lamentowicz M., Lamentowicz Ł., Payne R. J. (2013) Towards quantitative reconstruction of peatland nutrient status from fens. Holocene. 23: 1661–1665
Lamentowicz M., Słowiński M., Marcisz K., Zielińska M., Kaliszan K., Lapshina E., Gilbert D., Buttler A., Fiałkiewicz-Kozieł B., Jassey V. E. (2015) Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Res. 84: 312–325
Lara E., Roussel-Delif L., Fournier B., Wilkinson D. M., Mitchell E. A. (2016) Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43: 520–532
Legendre P., Gallagher E. D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia. 129: 271–280
Mazei Y., Belyakova O., Coppellotti O., Payne R. J. (2016) Testate amoeba communities of epilithic mosses and lichens: new data from Russia, Switzerland and Italy. Acta Protozool. 55: 51–59
Mazei Y., Bubnova O. A. (2007a) Species composition and structure of testate amoebae community in a Sphagnum bog at the initial stage of its formation. Biol. Bull. 34: 619–628
Mazei Y., Chernyshov V., Tsyganov A. N., Payne R. J. (2015) Testing the Effect of Refrigerated Storage on Testate Amoeba Samples. Microb. Ecol. 70: 861–864
Mazei Y., Tsyganov A. N. (2006) Freshwater testate amoebae. KMK: Moscow
Mazei Y., Tsyganov A. N. (2007b) Species composition, spatial distribution and seasonal dynamics of testate amoebae community in a Sphagnum bog (Middle Volga region, Russia). Protistol. 5: 156–206
Mazei Y., Tsyganov A. N., Bubnova O. A. (2007c) Structure of a community of testate amoebae in a Sphagnum dominated bog in upper Sura flow (Middle Volga territory). Biol. Bull. 34: 382–394
Mazei Y. A., Blinokhvatova Y. V., Embulaeva E. A. (2011) Specific features of the microspatial distribution of soil testate amoebae in the forests of the Middle Volga region. Arid. Ecosystems. 1: 46–52
Mazei Y. A., Chernyshov V. (2011) Testate amoebae communities in the southern tundra and forest-tundra of Western Siberia. Biol. Bull. 38: 789–796
Mitchell E. A. D., Charman D. J., Warner B. G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers. Conserv. 17: 2115–2137
Nasser N. A., Patterson R. T., Roe H. M., Galloway J. M., Falck H., Palmer M. J., Spence C., Sanei H., Macumber A. L., Neville L. A. (2016) Lacustrine Arcellinina (Testate Amoebae) as bioindicators of arsenic contamination. Microb. Ecol. 72: 130–149
Neville L. A., Patterson R. T., Gammon P., Macumber A. L. (2014) Relationship between ecological indicators (Arcellacea), total mercury concentrations and grain size in lakes within the Athabasca oil sands region, Alberta. Environ. Earth Sci. 72: 577–588
Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M. H. H., Oksanen M. J., Suggests M. (2007) The vegan package. https://cran.r-project.org/web/packages/vegan/index.html
Patterson R. T., Lamoureux E. D., Neville L. A., Macumber A. L. (2013) Arcellacea (testate lobose amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microb. Ecol. 65: 541–554
Payne R. (2009) The standard preparation method for testate amoebae leads to selective loss of the smallest taxa. Quaternary Newsl. 119: 16–20
Payne R., Telford R., Blackford J., Blundell A., Booth R., Charman D., Lamentowicz Ł., Lamentowicz M., Mitchell E., Potts G., Swindles G., Warner B. W. W. (2012a) Testing peatland testate amoeba transfer functions: appropriate methods for clustered training-sets. Holocene. 22: 819–825
Payne R. J. (2013) Seven reasons why protists make useful bioindicators. Acta Protozool. 52: 105
Payne R. J., Babeshko K. V., van Bellen S., Blackford J. J., Booth R. K., Charman D. J., Ellershaw M. R., Gilbert D., Hughes P. D., Jassey V. E. (2016) Significance testing testate amoeba water table reconstructions. Quaternary Sci. Rev. 138: 131–135
Payne R. J., Kishaba K., Blackford J. J., Mitchell E. A. D. (2006) Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. Holocene. 16: 403–414
Payne R. J., Mitchell E. A. D. (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42: 483–495
Payne R. J., Mitchell E. A. D., Nguyen-Viet H., Gilbert D. (2012b) Can pollution bias peatland paleoclimate reconstruction? Quaternary Res. 78: 170–173
Qin Y., Mitchell E. A., Lamentowicz M., Payne R. J., Lara E., Gu Y., Huang X., Wang H. (2013) Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. J. Paleolimnol. 50: 319–330
Qin Y., Payne R. J., Gu Y., Huang X., Wang H. (2012) Ecology of testate amoebae in Dajiuhu peatland of Shennongjia Mountains, China, in relation to hydrology. Frontiers Earth Sci. 6: 57–65
Qin Y., Xie S. (2011) Moss-dwelling testate amoebae and their community in Dajiuhu peatland of Shennongjia Mountains, China. J. Freshwater Ecol. 26: 3–9
R Development Core Team (2014) R: A language and environment for statistical computing. R foundation for Statistical Computing
Rakhleeva A. (2002) Testaceans (Testacea, Protozoa) of Taiga Soils in Western Siberia (Surgut Polesye). Biol. Bull. 29: 618–627
Ripley B. (2016) Package ‘MASS’. University of Oxford. https://cran.r-project.org/web/packages/MASS/index.html
Sheng Y., Smith L. C., MacDonald G. M., Kremenetski K. V., Frey K. E., Velichko A. A., Lee M., Beilman D. W., Dubinin P. (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cy. 18: GB3004
Smith H. G., Bobrov A., Lara E. (2008) Diversity and biogeography of testate amoebae. Biodivers. Conserv. 17: 329–343
Tolonen K., Warner B. G., Vasander H. (1992) Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: I. Autecology. Archiv. für Protistenk. 142: 119–138
Tsyganov A. N., Mityaeva O. A., Mazei Y. A., Payne R. J. (2016) Testate amoeba transfer function performance along localised hydrological gradients. Eur. J. Protistol. 55: 141–151
Vohník M., Burdíková Z., Vyhnal A., Koukol O. (2011) Interactions between testate amoebae and saprotrophic microfungi in a Scots pine litter microcosm. Microb. Ecol. 61: 660–668
Woodland W. A., Charman D. J., Sims P. C. (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene. 8: 261–273
Information: Acta Protozoologica, 2017, Volume 56, Issue 1, pp. 59 - 70
Article type: Original article
Department of Zoology and Ecology, Penza VG Belinsky State Pedagogical University, Penza, Russia
Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia
Penza State University, Penza, Russia
Tobolsk Complex Scientific Station, Ural Branch of the Russian Academy of Sciences, Tobolsk, Tyumen Region, Russia
Lomonosov Moscow State University
School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
Environment Department, University of York, Heslington, York, United Kingdom
Published at: 22.09.2017
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2152
Number of downloads: 2151