Acta Protozoologica

Jagiellonian University logo

Exploring the diversity and ecology of testate amoebae in West Siberian peatlands

Publication date: 22.09.2017

Acta Protozoologica, 2017, Volume 56, Issue 1, pp. 59 - 70



Yuri A. Mazei
Department of Zoology and Ecology, Penza VG Belinsky State Pedagogical University, Penza, Russia
Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia
All publications →
Viktor Chernyshov
Penza State University, Penza, Russia
All publications →
Sergei Bukhkalo
Tobolsk Complex Scientific Station, Ural Branch of the Russian Academy of Sciences, Tobolsk, Tyumen Region, Russia
All publications →
Natalia Mazei
Lomonosov Moscow State University
All publications →
Angela L. Creevy
School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
All publications →
Richard J. Payne
Environment Department, University of York, Heslington, York, United Kingdom
All publications →


Testate amoebae are valued for their functional significance and application as indicators of environmental conditions, particularly in peatland ecosystems. Research on testate amoebae has increased dramatically in recent years but there are still large parts of the world which have seen very little research. Here we consider testate amoeba communities of the West Siberian Lowland, the world’s largest peatland region and therefore one of the largest potential habitats for testate amoebae. Extensive sampling identified 89 taxa and showed that testate amoeba communities are structured by their physical and biological environment. We identified significant relationships between amoeba communities and both moisture content and vegetation composition. Despite the assemblages containing many widely-distributed species, some taxa considered typical of peatlands (e.g. Archerella flavum and Hyalosphenia papilio) were comparatively rare or absent, paralleling findings further south in Asia. We suggest that testate amoebae in this region deserve further study and may have useful applications in palaeoecological reconstruction and as bioindicators of the impacts of oil and gas extraction. 


Amesbury M. J., Mallon G., Charman D. J., Hughes P. D. M., Booth R. K., Daley T. J., Garneau M. (2013) Statistical testing of a new testate amoeba–based transfer function for water–table depth reconstruction on ombrotrophic peatlands in north–eastern Canada and Maine, United States. J. Quaternary Sci. 28: 27–39

Amesbury M. J., Swindles G. T., Bobrov A., Charman D. J., Holden J., 
Lamentowicz M., Mallon G., Mazei Y., Mitchell E. A., Payne R. J. (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Sci. Rev. 152: 132–151

Avel E., Pensa M. (2013) Preparation of testate amoebae samples affects water table depth reconstructions in peatland palaeoecological studies. Estonian J. Earth Sci62: 113–119

Bamforth S. S. (2008) Protozoa of biological soil crusts of a cool desert in Utah. J. Arid Environ72: 722–729

Bobrov A. (2003) Historical dynamics of lake and bog ecosystems and succession of testate amoebae (Testacea, Protozoa). Zoologicheskiy Zhurnal82: 215–223

Bobrov A., Qin Y., Wilkinson D. M. (2015) Latitudinal diversity gradients in free-living microorganisms-Hoogenraadia a key genus in testate amoebae biogeography. Acta Protozool54: 1

Bokova U., Babenko A., Temnikova I. (2015) Ecological peculiarities of the testate amoebae population in the Middle Ob flood plain. Int. J. Environ Studies72: 406–414

Booth R. K. (2001) Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands21: 564–576

Booth R. K. (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J. Paleolimnol28: 329–348

Booth R. K. (2008) Testate amoebae as proxies for mean annual water–table depth in Sphagnum–dominated peatlands of North America. J. Quaternary Sci23: 43–57

Bray J. R., Curtis J. T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349

Charman D. J. (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J. R. Soc. N. Z. 27: 465–483

Charman D. J. (1999) Testate amoebae and the fossil record: issues in biodiversity. J. Biogeogr26: 89–96

Charman D. J., Blundell A. (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J. Quaternary Sci22: 209–221

Charman D. J., Warner B. G. (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in northeastern Ontario. Can. J. Zool70: 2474–2482

Charman D. J., Warner B. G. (1997) Ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: modelling hydrological relationships for palaeoenvironmental reconstruction. Ecoscience4: 555–562

Clarke K. R. (1993) Non–parametric multivariate analyses of changes in community structure. Aus. J. Ecol18: 117–143.

DeJong T. (1975) A comparison of three diversity indices based on their components of richness and evenness. Oikos26: 222–227

Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998a) Short-term effect of nitrogen enrichment on the microbial communities of a peatland, in: Amiard J. C., Le Rouzic B., Berthet B., Bertru G. (Eds.), Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces: Proceedings of the Third International Joint Conference on Limnology and Oceanography held in Nantes, France, October 1996. Springer Netherlands, Dordrecht, pp. 111–119

Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998b) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb. Ecol35: 83–93

International Peat Society (2017) Global Peat Resources by Country. http://www.peatsociety.org/peatlands-and-peat/global-peat-resources-country (accessed 1/5/17)

Jassey V. E. J., Shimano S., Dupuy C., Toussaint M. L., Gilbert D. (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13 C and 15 N 
isotopic analyses. Protist163: 451–464

Jung W. (1936) Thecamoeben ursprünglicher lebender deutscher Hochmoore. Abh. Landesmus Westfalen7: 3–87

Kartashev A. G., Smolina T. V. (2008) Impact of oil on soil testate amoebae (Arcellinida, Euglyphida) in a field experiment. Zoologicheskiy Zhurnal87: 1027–1033

Kur’ina I. V. (2011) Ecology of testate amoebae as hydrological regime indicators in oligotrophic peatlands in the southern taiga of Western Siberia. Izvesti Penzenskogo Gosudarstvennogo Pedagogicheskogo Universiteta. 25: 368–375

Kur’ina I. V., Preis Y. I., Bobrov A. (2010) Testate amoebae inhabiting middle taiga bogs in Western Siberia. Biol. Bull37: 357–362

Lamentowicz M., Lamentowicz Ł., Payne R. J. (2013) Towards quantitative reconstruction of peatland nutrient status from fens. Holocene23: 1661–1665

Lamentowicz M., Słowiński M., Marcisz K., Zielińska M., Kaliszan K., Lapshina E., Gilbert D., Buttler A., Fiałkiewicz-Kozieł B., Jassey V. E. (2015) Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Res. 84: 312–325

Lara E., Roussel-Delif L., Fournier B., Wilkinson D. M., Mitchell E. A. (2016) Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr43: 520–532

Legendre P., Gallagher E. D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia129: 271–280

Mazei Y., Belyakova O., Coppellotti O., Payne R. J. (2016) Testate amoeba communities of epilithic mosses and lichens: new data from Russia, Switzerland and Italy. Acta Protozool55: 51–59

Mazei Y., Bubnova O. A. (2007a) Species composition and structure of testate amoebae community in a Sphagnum bog at the initial stage of its formation. Biol. Bull34: 619–628

Mazei Y., Chernyshov V., Tsyganov A. N., Payne R. J. (2015) Testing the Effect of Refrigerated Storage on Testate Amoeba Samples. Microb. Ecol70: 861–864

Mazei Y., Tsyganov A. N. (2006) Freshwater testate amoebae. KMK: Moscow

Mazei Y., Tsyganov A. N. (2007b) Species composition, spatial distribution and seasonal dynamics of testate amoebae community in a Sphagnum bog (Middle Volga region, Russia). Protistol5: 156–206

Mazei Y., Tsyganov A. N., Bubnova O. A. (2007c) Structure of a community of testate amoebae in a Sphagnum dominated bog in upper Sura flow (Middle Volga territory). Biol. Bull34: 382–394

Mazei Y. A., Blinokhvatova Y. V., Embulaeva E. A. (2011) Specific features of the microspatial distribution of soil testate amoebae in the forests of the Middle Volga region. Arid. Ecosystems1: 46–52

Mazei Y. A., Chernyshov V. (2011) Testate amoebae communities in the southern tundra and forest-tundra of Western Siberia. Biol. Bull. 38: 789–796

Mitchell E. A. D., Charman D. J., Warner B. G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers. Conserv. 17: 2115–2137

Nasser N. A., Patterson R. T., Roe H. M., Galloway J. M., Falck H., Palmer M. J., Spence C., Sanei H., Macumber A. L., Neville L. A. (2016) Lacustrine Arcellinina (Testate Amoebae) as bioindicators of arsenic contamination. Microb. Ecol72: 130–149

Neville L. A., Patterson R. T., Gammon P., Macumber A. L. (2014) Relationship between ecological indicators (Arcellacea), total mercury concentrations and grain size in lakes within the Athabasca oil sands region, Alberta. Environ. Earth Sci72: 577–588

Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M. H. H., Oksanen M. J., Suggests M. (2007) The vegan package. https://cran.r-project.org/web/packages/vegan/index.html

Patterson R. T., Lamoureux E. D., Neville L. A., Macumber A. L. (2013) Arcellacea (testate lobose amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microb. Ecol65: 541–554

Payne R. (2009) The standard preparation method for testate amoebae leads to selective loss of the smallest taxa. Quaternary Newsl119: 16–20

Payne R., Telford R., Blackford J., Blundell A., Booth R., Charman D., Lamentowicz Ł., Lamentowicz M., Mitchell E., Potts G., Swindles G., Warner B. W. W. (2012a) Testing peatland testate amoeba transfer functions: appropriate methods for clustered training-sets. Holocene22: 819–825

Payne R. J. (2013) Seven reasons why protists make useful bioindicators. Acta Protozool52: 105

Payne R. J., Babeshko K. V., van Bellen S., Blackford J. J., Booth R. K., Charman D. J., Ellershaw M. R., Gilbert D., Hughes P. D., Jassey V. E. (2016) Significance testing testate amoeba water table reconstructions. Quaternary Sci. Rev138: 131–135

Payne R. J., Kishaba K., Blackford J. J., Mitchell E. A. D. (2006) Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. Holocene16: 403–414

Payne R. J., Mitchell E. A. D. (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42: 483–495

Payne R. J., Mitchell E. A. D., Nguyen-Viet H., Gilbert D. (2012b) Can pollution bias peatland paleoclimate reconstruction? Quaternary Res78: 170–173

Qin Y., Mitchell E. A., Lamentowicz M., Payne R. J., Lara E., Gu Y., Huang X., Wang H. (2013) Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. J. Paleolimnol50: 319–330

Qin Y., Payne R. J., Gu Y., Huang X., Wang H. (2012) Ecology of testate amoebae in Dajiuhu peatland of Shennongjia Mountains, China, in relation to hydrology. Frontiers Earth Sci6: 57–65

Qin Y., Xie S. (2011) Moss-dwelling testate amoebae and their community in Dajiuhu peatland of Shennongjia Mountains, China. J. Freshwater Ecol26: 3–9

R Development Core Team (2014) R: A language and environment for statistical computing. R foundation for Statistical Computing

Rakhleeva A. (2002) Testaceans (Testacea, Protozoa) of Taiga Soils in Western Siberia (Surgut Polesye). Biol. Bull29: 618–627

Ripley B. (2016) Package ‘MASS’. University of Oxford. https://cran.r-project.org/web/packages/MASS/index.html

Sheng Y., Smith L. C., MacDonald G. M., Kremenetski K. V., Frey K. E., Velichko A. A., Lee M., Beilman D. W., Dubinin P. (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cy18: GB3004

Smith H. G., Bobrov A., Lara E. (2008) Diversity and biogeography of testate amoebae. Biodivers. Conserv. 17: 329–343

Tolonen K., Warner B. G., Vasander H. (1992) Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: I. Autecology. Archiv. für Protistenk142: 119–138

Tsyganov A. N., Mityaeva O. A., Mazei Y. A., Payne R. J. (2016) Testate amoeba transfer function performance along localised hydrological gradients. Eur. J. Protistol55: 141–151

Vohník M., Burdíková Z., Vyhnal A., Koukol O. (2011) Interactions between testate amoebae and saprotrophic microfungi in a Scots pine litter microcosm. Microb. Ecol. 61: 660–668

Woodland W. A., Charman D. J., Sims P. C. (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene8: 261–273


Information: Acta Protozoologica, 2017, pp. 59 - 70

Article type: Original research article


Department of Zoology and Ecology, Penza VG Belinsky State Pedagogical University, Penza, Russia

Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia

Penza State University, Penza, Russia

Tobolsk Complex Scientific Station, Ural Branch of the Russian Academy of Sciences, Tobolsk, Tyumen Region, Russia

Lomonosov Moscow State University

School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK

Environment Department, University of York, Heslington, York, United Kingdom

Published at: 22.09.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Yuri A. Mazei (Author) - 16%
Viktor Chernyshov (Author) - 16%
Sergei Bukhkalo (Author) - 16%
Natalia Mazei (Author) - 16%
Angela L. Creevy (Author) - 16%
Richard J. Payne (Author) - 20%

Article corrections:


Publication languages:


View count: 2060

Number of downloads: 2101