FAQ
Jagiellonian University logo

Experimental Evidence for Non-encysted, Freeze-resistant Stages of Terrestrial Naked Amoebae Capable of Resumed Growth after Freeze-thaw Events

Publication date: 17.02.2016

Acta Protozoologica, 2016, Volume 55, Issue 1, pp. 19 - 25

https://doi.org/10.4467/16890027AP.16.003.4044

Authors

O. Roger Anderson
Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.
All publications →

Titles

Experimental Evidence for Non-encysted, Freeze-resistant Stages of Terrestrial Naked Amoebae Capable of Resumed Growth after Freeze-thaw Events

Abstract

Experimental evidence is presented to support a hypothesis that terrestrial naked amoebae, collected during late autumn from cold, moist temperate soil, develop a non-encysted, freeze-thaw resistant stage that is capable of surviving winter frozen soil. Therefore, in addition to cyst formation, naked amoebae may survive harsh, frozen winter soil in a dormant or resting stage that is capable of rapid resumed growth in spring, thus gaining an immediate competitive advantage in exploiting food and other environmental resources early after the winter thaw.

References

Download references

Anderson O. R. (1975) The ultrastructure and cytochemistry of resting cell formation in Amphora coffaeformis (Ag.) Kütz. J. Phycol1: 272–281

Anderson O. R. (1976) Photosynthesis and respiration during resting cell formation in Amphora coffaeformisLimnol. Oceanogr21: 452–456

Anderson O. R. (2000) Abundance of terrestrial gymnamoebae at a northeastern U. S. site: A four-year study, including the El Niño winter of 1997–1998. J. Eukaryot. Microbiol47: 148–155

Anderson O. R. (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: Evidence of microbiocoenoses. J. Eukaryot. Microbiol49: 18–24

Anderson O. R. (2004) The effects of release from cold stress on the community composition of terrestrial gymnamoebae: A laboratory-based ecological study simulating transition from winter to spring. Acta Protozool43: 21–28

Anderson O. R. (2012) The role of bacterial-based protist communities in aquatic and soil ecosystems and the carbon biogeochemical cycle, with emphasis on naked amoebae. Acta Protozool51: 209–221

Bayer-Giraldi M., Uhlig C., John U., Mock T., Valentin K. (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus FragilariopsisEnviron. Microbiol12: 1041–1052

Butler H., Rogerson A. (1995) Temporal and spatial abundance of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea Area, Scotland. J. Euk. Microbiol. 42: 724–730

Chambers J. A., Thompson J. E. (1974) Age-dependent excystment of the protozoan Acanthamoeba castellaniiJ. Gen. Microbiol80: 375–380.

Chang S. L. (1958) Cytological and ecological observations on the flagellate transformation of Naegleria gruberiJ. Gen. Microbiol18: 579–585

Clarholm M. (2002) Bacteria and protozoa as integral components of the forest ecosystem: their role in creating a naturally varied soil fertility. Antonie van Leeuwenhoek 81: 309–318

Fouque E., Yefimova M., Trouilhe M.-C., Quellard N., Fernandez B., Rodier M.-H., Thomas V., Humeau P., Héchard Y. (2014) Morphological study of encystment and excystment of Vermamoeba vermiformis revealed original traits. J. Eukaryot. Microbiol62: 327–337.

Geisen S., Bandow C., Römbke J., Bonkowski M. (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57: 205–213

Gwak I. G., Jung W., Kim H. J., Kang S. H., Jin E. S. (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracileMar. Biotechnol12: 630–639

Hargraves P. E., French F. W. (1983) Diatom resting spores: significance and strategies. In: Survival Strategies of the Algae, (Ed. G. A. Fryxell). Cambridge University Press, New York, 49–68

Laybourn-Parry J. (2002) Survival mechanisms in Antarctic lakes. Philos. Trans. R. Soc. Lond. B357: 863–869

Jung W., Gwak Y., Davies P. L., Kim H. J., Jin E.-S. (2014) Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicolaMar. Biotechnol16: 502–512

Kaushal D. C., Shukla O. P. (1977) Excystment of axenically prepared cysts of Hartmannella culbertsoni. J. Gen. Microbiol98: 117–123.

Kawecka B., Eloranta P. (1986) Biology and ecology of snow algae 4. SEM studies on the cell wall structure of ‘resting cells’ of Chloromonas rostafinski (Starmach et Kawecka) Gerloff et Ettl (Chlorophyta, Volvocales). Acta Hydrobiol28: 387–391

Lloyd D. (2014) Encystment in Acanthamoeba castellanii: A review. Exp. Parasitol145: S20–S27

Matoba A. Y., Pare P. D., Le T. D., Osato M. S. (1989) The effects of freezing and antibiotics on the viability of Acanthamoeba cysts. Arch. Ophthalmol-Chic107: 439–440

Osafune T., Schiff J. A. (1984) The form of the plastid during light-induced chloroplast development in dark-grown resting cells of Euglena gracilis var. bacillarisJ. Electron Microsc33: 304

Osato M. S., Robinson N. M., Wilhelmus K. R., Jones D. B. (1991) In vitro evaluation of antimicrobial compounds for cysticidal activity against AcanthamoebaRev. Infect. Dis5: S431–S435

Page F. C. (1988) A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological Association, Ambleside, Cumbria, U. K., 19

Scheer A., Parthier B., Krauspe R. (1986) Proteolysis in Euglena gracilis. IV. Proteolytic activities during light-induced chloroplast formation in resting cells. J. Plant Physiol123: 455–466

Sicko-Goad L., Stoermer E. F., Fahnenstiehl G. (1986) Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas lake, Michigan. I. Light microscopy and C-14 uptake. J. Phycol22: 22–28

Siddiqui R., Ortega-Rivas A., Khan N. A. (2008) Balmutha mandrillaris resistance to hostile conditions. J. Med. Microbiol57: 428–431

Souffreau C., Vanormelingen P., Sabbe K., Vyverman W. (2013) Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia 52: 246–255

Information

Information: Acta Protozoologica, 2016, Volume 55, Issue 1, pp. 19 - 25

Article type: Original article

Authors

Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.

Published at: 17.02.2016

Article status: Open

Licence: None

Percentage share of authors:

O. Roger Anderson (Author) - 100%

Article corrections:

-

Publication languages:

English