Electron Microscopical Investigations of a New Species of the Genus Sappinia (Thecamoebidae, Amoebozoa), Sappinia platani sp. nov., Reveal a Dictyosome in this Genus
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEElectron Microscopical Investigations of a New Species of the Genus Sappinia (Thecamoebidae, Amoebozoa), Sappinia platani sp. nov., Reveal a Dictyosome in this Genus
Publication date: 31.10.2014
Acta Protozoologica, 2015, Volume 54, Issue 1, pp. 45 - 51
https://doi.org/10.4467/16890027AP.15.004.2191Authors
Electron Microscopical Investigations of a New Species of the Genus Sappinia (Thecamoebidae, Amoebozoa), Sappinia platani sp. nov., Reveal a Dictyosome in this Genus
The genus Sappinia belongs to the family Thecamoebidae within the Discosea (Amoebozoa). For long time the genus comprised only two species, S. pedata and S. diploidea, based on morphological investigations. However, recent molecular studies on gene sequences of the small subunit ribosomal RNA (SSU rRNA) gene revealed a high genetic diversity within the genus Sappinia. This indicated a larger species richness than previously assumed and the establishment of new species was predicted. Here, Sappinia platani sp. nov. (strain PL-247) is described and ultrastructurally investigated. This strain was isolated from the bark of a sycamore tree (Koblenz, Germany) like the re-described neotype of S. diploidea. The new species shows the typical characteristics of the genus such as flattened and binucleate trophozoites with a differentiation of anterior hyaloplasm and without discrete pseudopodia as well as bicellular cysts. Additionally, the new species possesses numerous endocytobionts and dictyosomes. The latter could not be found in previous EM studies of the genus Sappinia. Standing forms, a character of the species S. pedata, could be formed on older cultures of the new species but appeared extremely seldom. A loose layer of irregular, bent hair-like structures cover the plasma membrane dissimilar to the glycocalyx types as formerly detected in other Sappinia strains.
Brown M. W., Spiegel F. W., Silberman J. D. (2007) Amoeba at attention: phylogenetic affinity of Sappinia pedata. J. Eukaryot. Microbiol. 54: 511–519
Cook W. R. I. (1939) Some observations on Sappinia pedata Dang. Trans. Brit. Mycol. Soc. 22: 302–306
Dangeard P. A. (1896) Contribution à l’étude des Acrasiées. Botaniste 5: 1–20
Gelman B. B., Rauf S. J., Nader R., Popov V., Borkowski J., Chaljub G., Nauta H. W., Visvesvara G. S. (2001) Amoebic encephalitis due to Sappinia diploidea. J. Am. Med. Assoc. 285: 2450–2451
Gelman B. B., Popov V., Chaljub G., Nader R., Rauf S. J., Nauta H. W., Visvesvara G. S. (2003) Neuropathological and ultrastructural features of amoebic encephalitis caused by Sappinia diploidea. J. Neuropathol. Exp. Neurol. 62: 990–998
Goodfellow L. P., Belcher J. H., Page F. C. (1974) A light- and electron-microscopical study of Sappinia diploidea, a sexual amoeba. Protistologica 2: 207–216
Guindon S., Lethiec F., Duroux P., Gascuel O. (2005) PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: W557–559
Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. Symp. Ser. 41: 95–98
Hartmann M., Nägler K. (1908) Copulation bei Amoeba diploidea n. sp. mit Selbständigbleiben der Gametenkerne während des ganzen Lebenszyklus. Sitzungsber. d. Ges. Naturforsch. Fr. Berlin 5: 112–125
Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314
Levine N. D. (1961) Protozoan Parasites of Domestic Animals and of Man. Burgess Publishing Company Minneapolis, Minnesota
Michel R., Wylezich C., Hauröder B., Smirnov A. V. (2006) Phylogenetic position and notes on the ultrastructure of Sappinia diploidea (Thecamoebidae). Protistology 4: 319–325
Noble G. A. (1958) Coprozoic protozoa from Wyoming animals. J. Protozool. 5: 9–74
Olive E. W. (1902) Monograph of the Acrasieae. Proc. Boston Soc. Nat. Hist. 30: 451–510
Page F. C. (1988) A New Key to Freshwater and Soil Gymnamoebia. Freshwater Biological Association, Ambleside
Page F. C., Siemensma F. J. (1991) Nackte Rhizopoda und Heliozoa. Gustav Fischer Verlag, Stuttgart, New York
Raper K. B. (1940) The communal nature of the fruiting process in the Acrasieae. Am. J. Bot. 27: 436–448
Raper K. B. (1960) Levels of cellular interaction in amoeboid populations. Proc. Am. Philos. Soc. 104: 579–604
Qvarnstrom Y., da Silva A. J., Schuster F. L., Gelman B. B., Visvesvara G. S. (2009) Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J. Infect. Dis. 199: 1139–1142
Schuster F. L. (2002) Cultivation of pathogenic and opportunistic free-living amebas. Clin. Microbiol. Rev. 15: 342–354
Schuster F. L., Visvesvara G. S. (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34: 1001–1027
Smirnov A. V., Nassonova E. S., Chao E., Cavalier-Smith T. (2007) Phylogeny, evolution and taxonomy of vannellid amoebae. Protist 158: 295–325
Smirnov A. V., Chao E., Nassonova E. S., Cavalier-Smith T. (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162: 545–570
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882
Trabelsi H., Dendana F., Sellami A., Sellami H., Cheikhrouhou F., Neji S., Makni F., Ayadi A. (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol. Biol. 60: 399–405
Visvesvara G. S., Moura H., Schuster F. L. (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50: 1–26
Walochnik J., Wylezich C., Michel R. (2010) Sappinia sp.: History, phylogeny and medical relevance. Exp. Parasitol. 126: 4–13
Wylezich C., Walochnik J., Michel R. (2009) High genetic diversity of Sappinia-like strains (Amoebozoa, Thecamoebidae) revealed by SSU rRNA investigations. Parasitol. Res. 105: 869–873
Information: Acta Protozoologica, 2015, Volume 54, Issue 1, pp. 45 - 51
Article type: Original article
Department of General Ecology, Zoological Institute, University of Cologne, Germany; present address: Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Research Group Protozoology, Institute of Biology/Zoology, Free University of Berlin, Berlin, Germany; Molecular Systematics Group, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Department of Invertebrate Zoology, Faculty of Biology and Soil Science, St-Petersburg State University, St-Petersburg, Russia
Central Institute of the Federal Armed Forces Medical Services, Koblenz, Germany
CHLAREAS – Chlamydia Research Association, Vandoeuvre-lès-Nancy, France; Laboratory of Soil Biology, Institute of Biology, University of Neuchâtel, Switzerland
Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
Published at: 31.10.2014
Received at: 15.01.2014
Accepted at: 14.04.2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
English