FAQ
Jagiellonian University logo

Cluster Analysis of Non-conserved Proteins of Trypanosoma cruzi Reference Strains displays Parity Between these Groupings (Peptidemes) and the Consensually Accepted Parasite Lineages

Publication date: 25.11.2019

Acta Protozoologica, 2019, Volume 58, Issue 2, pp. 81 - 88

https://doi.org/10.4467/16890027AP.19.011.11420

Authors

,
Felipe S. Coelho
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil
All publications →
,
Danielle P. Vieira
Polo Avançado da Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil
All publications →
,
Angela H. Lopes
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil
All publications →
Maria A. Sousa
Laboratório de Toxoplasmose e Outras Protozooses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
All publications →

Titles

Cluster Analysis of Non-conserved Proteins of Trypanosoma cruzi Reference Strains displays Parity Between these Groupings (Peptidemes) and the Consensually Accepted Parasite Lineages

Abstract

The protein profiles of the epimastigote stages from eight reference strains of Trypanosoma cruzi belonging to three different lineages (TcI, TcII and TcVI) were analyzed by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis), under standardized conditions. More than 40 protein bands were observed in each strain. Around 55% of them were not shared by all stocks (non-conserved proteins), representing their intra-specific variability. Then, they were coded for processing by numerical taxonomy, using three association coefficients and the UPGMA clustering algorithm. With all coefficients assayed, two major groups were clearly seen, confirming the dichotomy within T. cruzi taxon, as demonstrated by other molecular and biochemical approaches. In the present study, the term peptideme was used to name the groups of strains based on their polypeptide profiles, following the above-cited methodology. Then, two major peptidemes were identified, each one presenting subdivisions. The isolates identified as TcI clustered in the same major peptideme, displaying a subgroup with the opossum isolates (G, SC28, Dm28c) apart from the stock of human origin (Colombian strain). The other major peptideme also showed two subgroups, regardless the coefficient used. One of them included  the TcII strains (Y, SF21), both from Brazilian patients, and the other the TcVI stocks, both originally from triatomines from Southern Brazil (CL Brener, FL). As far we know, this is the first report on the parity between the T. cruzi lineages consensually accepted and their grouping into peptidemes based on SDS-PAGE and the numerical analysis of non-conserved proteins.

References

Download references

Andrade S. G. (1974) Caracterização de cepas do Trypanosoma cruzi isoladas no Recôncavo Baiano. Rev. Pat. Trop. 3: 65−121

Añez-Rojas N., Garcia-Lugo P., Crisante G., Rojas A., Añez N. (2006) Isolation, purification and characterization of GPIanchored membrane proteins from Trypanosoma rangeli and Trypanosoma cruzi. Acta Trop. 97: 140−145

Avila C. C., Almeida F. G., Palmisano G. ( 2016) Direct identificaton of trypanosomatids by matrix-assisted laser desorption ionization-time of flight mass spectrometria (DIT MALDITOF MS). J. Mass Spectrom. 51: 549-557 (doi: org/10.1002/jms3763)

Barr S. C., Dennis V. A., Klei T. R. (1990) Growth characteristics in axenic and cell cultures, protein profiles, and zymodeme typing of three Trypanosoma cruzi isolates from Louisiana mammals. J. Parasitol. 76: 631−638

Branquinha M. H., Meirelles M. N. L., Lopes A., Moreira C., Vermelho A. B. (1995) Use of glycoconjugates for trypanosomatid taxonomy. Curr. Microbiol. 30: 77−82

Brener Z. (1965) Comparative studies of different strains of Trypanosma cruzi. Ann. Trop. Med. Parasitol. 59: 19−26

Brisse S., Barnabé C., Tibayrenc M. (2000) Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int. J. Parasitol. 30: 35−44

Cervantes-Landín A. Y., Martinez I., Schabib M., Espinoza B. (2014) High molecular weight proteins proteins of Trypanosoma cruzi reduce cross-reaction with Leishmania spp. in serological diagnosis tests. BioMed. Res. Int: https://dx.doi.org/10.1155/2014/365403  

Contreras V. T., Salles J. M., Thomas N., Morel C. M., Goldenberg S. (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 16: 315−327

Cosentino R. O., Agüero F. (2012) A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product. PLoS Negl. Trop. Dis. 6(7): e1777

Costas M. (1990) Numerical analysis of sodium dodecyl sulphatepolycrylamide gel electrophoretic protein patterns for the classification, identification and typing of medically important bacteria. Electrophoresis 11: 382−391

Cura C. I., Duffy T., Lucero R. H., Bisio M., Péneau J., Jimenez- Coello M., Calabuig E., Gimenez M. J., Valencia Ayala E., Kjos S. A., Santalla J., Mahaney S. M., Cayo N. M., Nagel Cluster Analysis of Proteins in T. cruzi 119 C., Barcán L., Machaca E. S. M., Acosta Viana K.Y., Brutus L., Ocampo S. B., Aznar C., Cuba-Cuba C. A., Gürtler R. E., Ramsey J. M., Ribeiro I., VandeBerg J. L., Yadon Z. E., Osuna A., Schijman A. G. (2015) Multiplex real-time PCR assay using TaqMan probes for the identification of Trypanosoma cruzi DTUs in biological and clinical samples. PLoS Negl. Trop. Dis. 9(5): e0003765 

El-Sayed N. M., Myler P. J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E. A., Hertz- Fowler C., Ghedin E., Peacock C., Bartholomeu D. C., Hass B. J., Tran A.-N., Wortman J. R., Alsmark U. C. M., Angiuoli S., Anupama A., Badger J., Bringaud F., Cadag E., Carlton J. M., Cerqueira G. C., Creasy T., Delcher A. L., Djikeng A., Embley T. M., Hause C., Ivens A. C., Kummerfeld S. K., Pereira-Leal J. B., Nilsson D., Peterson J., Salzberg S. L., Shallom J., Silva J. C., Sandaram J., Westenberger S., White O., Melville S. E., Donelson J. E., Andersson B., Stuart K. D., Hall N. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404−409

Fernandes O., Santos S. S., Cupolillo E., Mendonça B., Derre R., Junqueira A. C. V., Santos L. C., Sturm N. R., Naiff R. D., Barret T. V., Campbell D. A., Coura J. R. (2001) A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans. R. Soc. Trop. Med. Hyg. 95: 97−99

Gibson W. C., Parr C. W., Swindlehurst C. A., Welch S. G. (1978) A comparison of the isoenzymes, soluble proteins, polypeptides and free amino acids from ten isolates of Trypanosoma evansi. Comp. Biochem. Physiol. 60B: 137−142

Gomes S. A. O., Misael D., Silva B., Feder D., Silva C. S., Monte- Gonçalves T. C., Santos A. L. S., Santos-Mallet J. R. (2009). Major cysteine protease (cruzipain) in Z3 sylvatic isolates of Trypanosoma cruzi from Rio de Janeiro, Brazil. Parasitol. Res. 105: 743−749

Hoare C. A. (1967) Evolutionary trends in mammalian trypanosomes. Adv. Parasitol. 5: 47−91

Janssen P. T., Van Bijsterveld O. P. (1981) Comparison of electrophoretic techniques for the analysis of human tear fluid proteins. Clin. Chim. Acta 114: 207−2018

Kikuchi A. S., Sodré C. L., Kalume D. E., Elias E. G. R., Santos A. L. S., Soeiro M. N., Meuser M., Chapeaurouge A., Perales J.,  Fernandes O. (2010). Proteomic analysis of two Trypanosoma cruzi zymodeme 3 strains. Exp. Parasitol. 126: 540−551

Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680−685

León C. M., Hernández C., Montilla M., Ramirez J. D. (2015) Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Mem. Inst. Oswaldo Cruz 110: 378−393

Lima L., Espinosa-Álvarez O., Ortiz P. A., Trejo-Varón J. A., Carranza J. C., Pinto C. M., Serrano M. G., Buck G. A., Camargo E. P., Teixeira M. M. G. (2015) Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing units). Acta Trop. 151: 166−177

Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265−275

Luna-Marín K. P., Jaramillo-Londoño C. L., Hérnandez-Torres J., Gutiérrez-Marín R., Vallejo G. A., Angulo-Silva V. M. (2009) ITS-RFLP- and RAPD-based genetic variability of Trypanosoma cruzi I, human and vector strains in Santander (Colombia). Parasitol. Res. 105: 519−528

Macedo A. M., Vallejo G. A., Chiari E., Pena D. J. (1993) DNA fingerprinting reveals relationships between strains of Trypanosoma rangeli and Trypanosoma cruzi. In: DNA Fingerprinting: State of Science, (Eds. S. D. J. Pena, R. Chakraborty, J. T. Epplan, A. J. Jeffreys). Birkäuser Verlag Basel, 321−329

Marcili A., Lima L., Cavazzana Jr M., Junqueira A. C. V., Veludo H. H., Maia-da-Silva F., Campaner M., Paiva F., Nunes V. L. B.,, Teixeira M. M. G. (2009) A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136: 641−655

Mejía A. J., Paláu M. T., Züñiga C. A. (2004) Protein profiles of Trypanosoma cruzi and Trypanosoma rangeli. Parasitol. Latinoam. 59: 142−147

Miles M. A., Souza A., Póvoa M., Shaw J. J., Lainson R., Toyé P. J. (1978) Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas’ disease in Amazonian Brazil. Nature 272: 819−821

Moraes M. H., Guarneri A., Girardi F., Rodrigues J. B., Eger I., Tyler K. M., Steindel M., Grisard E. C. (2008) Different serological cross-reactivity of Trypanosoma rangeli forms in Trypanosoma cruzi-infected patients sera. Parasit Vectors: https//doi.org/10.1186/1756-3305-1-20

Morel C., Chiari E., Camargo E. A., Mattei D. M., Romanha A. J., Simpson L. (1980) Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease. Proc. Natl Acad. Sci. (USA) 77: 6810−6814

Oliveira G. S., Kawahara R., Rosa-Fernandes L., Mule S. N., Avila C. C., Teixeira M. M. G., Larsen M. R., Palmisano G. (2018) Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2). PLoS Negl. Trop. Dis. 12(4): e0006351

Oliveira T. S. F., Santos B. N., Galdino T. S., Hasslocher-Moreno A. M., Bastos O. M. P., Sousa M. A. (2017) Trypanosoma cruzi I among isolates from chronic Chagas disease patients followed at the Evandro Chagas National Institute of Infectious Diseases (Fiocruz, Brazil). Rev. Soc. Brasil. Med. Trop. 50: 35−43

Pinho R. T., Giovanni-de-Simone S. (1989) Characterization of plasma membrane polypeptides of Trypanosoma from bats. Mem. Inst. Oswaldo Cruz 84: 13−18

Ramírez J. D., Hernández C. (2018) Trypanosoma cruzi I: towards the need of genetic subdivision? Part II. Acta Trop. 184: 53−58

Rodrigues C. C., Höfling J. F., Boriollo M. F. G., Rodrigues J. A. O., Azevedo R. A., Gonçalves R. B., Gomes L. H., Tavares F. C. A. (2004) SDS-PAGE and numerical analysis of Candida albicans from human oral cavity and other anatomical sites. Braz. J. Microbiol. 35: 40−47

Rosa E. A. R., Rosa R. T., Pereira C. V., Boriollo M. F. G., Höfling J. F. (2000) Analysis of parity between protein-based electrophoretic methods for the characterization of oral Candida species. Mem. Inst. Oswaldo Cruz 95: 801−806

Saldaña A., Harris R. A., Örn A., Sousa O. E. (1998) Trypanosoma rangeli: identification and purification of a 48-kDa-specific antigen. J. Parasitol. 84: 67−73

Saldaña A., Örn A., Henriksson J., Sousa O. E. (1993) Evaluacion de cuatro metodos immunobioquimico/moleculares en la identificacion de cepas de Trypanosoma cruzi y Trypanosoma rangeli. Rev. Med. Panamá 18: 41−52

Sneath P. H. A., Sokal R. R. (1962) Numerical taxonomy. Nature 193: 855−860

Sousa M. A. (1999) Morphobiological characterization of Trypanosoma cruzi Chagas, 1909 and its distinction from other trypanosomes. Mem. Inst. Oswaldo Cruz 94 (Suppl I): 205−210

Souto R. P., Fernandes O., Macedo A. M., Campbell D. A., Zingales B. (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83: 141−152

Sturm N. R., Degrave W., Morel C., Simpson L. (1989) Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast minicircle DNA sequences: use in diagnosis of Chagas’ disease. Mol. Biochem. Parasitol. 33: 205−214

Tanowitz H. B., Weiss L. M., Montgomery S. P. (2011) Chagas disease has now gone global. PLoS Negl. Trop. Dis. 5(4): e1136

Taylor A. E. R., Edwards Y. H., Smith V., Baker J. R., Woo P. T. K., Lanham S. M., Pennick N. C. (1982) Trypanosoma (Schizotrypanum) species from insectivorous bats (Microchiroptera): characterization by polypeptide profiles. Syst. Parasitol. 4: 155−168

Taylor A. E. R., Edwards Y. H., Smith V., Miles M. A., Gibson W. C. (1983) The polypeptide profiles of strains of the Trypanosoma subgenera Schizotrypanum and Trypanozoon: peptideme characterization. Trans. R. Soc. Trop. Med. Hyg. 77: 354−362

Taylor A. E. R., Williams J. E. (1977) The possibility of characterizing South American trypanosomes with sodium dodecyl sulphate polyacrylamide gel electrophoresis. Parasitology 75: 23

Tibayrenc M., Neubauer K., Barnabé C., Guerrini F., Skarecky D., Ayala F. J. (1993) Genetic characterization of six parasitic Protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc. Natl Acad. Sci. (USA) 90: 1335−1339

Tibayrenc M., Ayala F. J. (1988) Isozyme variability in Trypanosoma cruzi, the agent of Chagas’ disease: genetical, taxonomical, and epidemiological significance. Evolution 42: 277−292

WHO (2019) Chagas disease (American Trypanosomiasis). https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)

Ziccardi M., Lourenço-de-Oliveira R., Alves M. C., Cruz M. F. F. (2005) Trypanosoma saimirii Rodhain, a junior synonym of Trypanosoma rangeli Tejera. J. Parasitol. 91: 653−656

Zingales B., Andrade S. G., Briones M. R. S., Campbell D. A., Chiari E., Fernandes O., Guhl F., Lages-Silva E., Macedo A. M., Machado C. R., Miles M. A., Romanha A. J., Sturm N. R., Tibayrenc M., Schijman A. G. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 104: 1051−1054

Zingales B., Miles M. A., Campbell D. A., Tibayrenc M., Macedo A. M., Teixeira M. M. G., Schijman A. G., Llewellyn M. S., Lages- Silva E., Machado C. R., Andrade S. G., Sturm N. R. (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12: 240−253

Information

Information: Acta Protozoologica, 2019, Volume 58, Issue 2, pp. 81 - 88

Article type: Original article

Authors

Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil

Polo Avançado da Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil

Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil

Laboratório de Toxoplasmose e Outras Protozooses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil

Published at: 25.11.2019

Received at: 01.06.2019

Accepted at: 04.11.2019

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Felipe S. Coelho (Author) - 25%
Danielle P. Vieira (Author) - 25%
Angela H. Lopes (Author) - 25%
Maria A. Sousa (Author) - 25%

Article corrections:

-

Publication languages:

English