Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEBroad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA
Publication date: 26.05.2014
Acta Protozoologica, 2014, Volume 53, Issue 2, pp. 207 - 213
https://doi.org/10.4467/16890027AP.14.017.1598Authors
Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA
Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, although support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
Adl S. M., Simpson A. G., Lane C. E., Lukes J., Bass D., Bowser S. S., Brown M., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., Le Gall L., Lynn D. H., McManus H., Mitchell E. A. D., Mozley-Stanridge S. E., Parfrey L. W., Pawlowski J., Rueckert S., Shadwick L., Schoch C., Smirnov A., Spiegel F. W. (2012) Revised classification of the protists. J. Eukaryot. Microbiol. 59: 429–493
Alfaro M. E., Zoller S., Lutzoni F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and boostrapping in as,sessing phylogenetic confidence. Mol. Biol. Evol. 20: 255–266 Bachy C., Gómez F., López-García P., Dolan J. R., Moreira D. (2012) Molecular phylogeny of tintinnid ciliates. Protist 163: 873–887
Bourland W. A., Vd’ačný P., Davis M. C., Hampikian G. (2011) Morphology, morphometrics and molecular characterization of Bryophrya gemmea n. sp. (Ciliophora, Colpodea): implications for the phylogeny and evolutionary scenario for the formation of oral ciliature in order Colpodida. J. Eukaryot. Microbiol. 58: 22–36
Bourland W. A., Hampikian G., Vd’ačný P. (2012) Morphology and phylogeny of a new woodruffiid ciliate, Etoschophrya inornata sp. n. (Ciliophora, Colpodea, Platyophryida), with an account on evolution of platyophryids. Zool. Scripta 41: 400–416
Dunthorn M., Foissner W., Katz L. A. (2008) Molecular phyloge,netic analysis of class Colpodea (phylum Ciliophora) using broad taxon sampling. Mol. Phylogenet. Evol. 48: 316–327
Dunthorn M., Katz L. A. (2008) Richness of morphological hypoth,eses in ciliate systematics allows for detailed assessment of ho,mology and comparisons with gene trees. Denisia 23: 389–394 Dunthorn M., Eppinger M., Schwarz M. V. J., Schweikert M., Boe,nigk J., Katz L. A., Stoeck T. (2009) Phylogenetic placement of the Cyrtolophosididae Stokes, 1888 (Ciliophora; Colpodea) and neotypification of Aristerostoma marinum Kahl, 1931. Int. J. Syst. Evol. Microbiol. 59: 167–180
Dunthorn M., Foissner W., Katz L. A. (2011) Expanding character sampling in ciliate phylogenetic inference using mitochondrial SSU-rDNA as a molecular marker. Protist 162: 85–99
Dunthorn M., Katz L. A., Stoeck T., Foissner W. (2012a) Congru,ence and indifference between two molecular markers for un,derstanding oral evolution in the Marynidae sensu lato (Cili,ophora, Colpodea). Eur. J. Protistol. 48: 297–304
Dunthorn M., Stoeck T., Wolf K., Breiner H.-W., Foissner W. (2012b) Diversity and endemism of ciliates inhabiting Neotrop,ical phytotelmata. Syst. Biodivers. 10: 195–205
Eddy S. R. (2001) HMMER: Profile hidden markov models for bio,logical sequence analysis. http://hmmer.wustl.edu
Foissner W. (1993) Colpodea (Ciliophora). Protozoenfauna 4/1: i–x, 1–798
Foissner W., Chao A., Katz L. A. (2008) Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Con,serv. 17: 345–363
Foissner W., Blake N., Wolf K., Breiner H.-W., Stoeck T. (2009) Morphological and molecular characterization of some perit,richs (Ciliophora: Peritrichida) from tank bromeliads, includ,ing two new genera: Orborhabdostyla and Vorticellides. Acta Protozool. 48: 291–319
Foissner W., Stoeck T., Agatha S., Dunthorn M. (2011) Intraclass evolution and classification of the Colpodea (Ciliophora). J. Eu,karyot. Microbiol. 58: 397–415
Gao S., Huang J., Li J., Song W. (2012) Molecular phylogeny of the cyrtophorid ciliates (Protozoa, Ciliophora, Phyllopharyngea). PLoS ONE 7: e33198
Gong J., Gao S., Roberts D. M., Al-Rasheid K. A. S., Song W. (2008) Trichopodiella faurei n. sp. (Ciliophora, Phyllopharyn,gea, Cyrtophoria): morphological description and phylogenetic analyses based on SSU rRNA and group I intron sequences. J. Eukaryot. Microbiol. 55: 492–500
Gong J., Stoeck T., YI Z., Miao M., Zhang N., Roberts D. M., War,ren A., Song W. (2009) Small subunit rDNA phylogenies show that the class Nassophorea is not monophyletic (Phylum Cili,ophora). J. Eukaryot. Microbiol. 56: 339–347
Hillis D. M., Bull J. J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182–192
Israel R. L., Pond S. L., Muse S. V., Katz L. A. (2002) Evolution of duplicated alpha-tubulin genes in ciliates. Evolution 56: 1110–1122
Katz L. A., DeBerardinis J., Hall M., Kovner A. M., Dunthorn M., Muse S. V. (2011) Heterogeneous rates of molecular evolution between cryptic species of the ciliate morphospecies Chilodo,nella uncinata. J. Mol. Evol. 73: 266–272
Lasek-Nesselquist E., Katz L. A. (2001) Phylogenetic position of Sorogena stoianovitchae and relationships within the class Colpodea (Ciliophora) based on SSU rDNA sequences. J. Eu,karyot. Microbiol. 48: 604–607
Li L. F., Song W. (2006a) Phylogenetic position of Dysteria derouxi (Ciliophora: Phyllopharyngea: Dysteriida) inferred from the small subunit ribosomal RNA gene sequence. Acta Oceanol. Sin. 25: 119–126
Li L. F., Song W. (2006b) Phylogenetic positions of two crytophorid ciliates, Dysteria procera and Hartmannula derouxi (Cilioph,ora: Phyllopharyngea: Dysteriida) inferred from the complete small subunit ribosomal RNA gene sequences. Acta Protozool. 45: 265–270
Lynn D. H. (1976) Comparative ultrastructure and systematics of Colpodida. Structural conservatism hypothesis and a descrip,tion of Colpoda steinii Maupas. J. Protozool. 23: 302–314
Lynn D. H., Wright A. D. G., Schlegel M., Foissner W. (1999) Phylogenetic relationships of orders within the class Colpodea (phylum Ciliophora) inferred from small subunit rRNA gene se,quences. J. Mol. Evol. 48: 605–614
Lynn D. H. (2003) Morphology or molecules: how do we identify the major lineages of ciliates (Phylum Ciliophora)? Eur. J. Pro,tistol. 39: 356–364
Lynn D. H. (2008) The ciliated protozoa: characterization, classifica,tion, and guide to the literature, 3rd edition. Springer, Dordrecht Maddison W. P., Maddison D. R. (2005) MacClade v. 4.0.8. Sinauer Associates, Sunderland, MA
Matthes D. (1988) Suctoria und Urceolariidae. Protozoenfauna 7/1: i–ix, 1–309
Orsi W., Edgcomb V., Faria J., Foissner W., Fowle W. H., Hohman T., Suarez P., Taylor C., Taylor G. T., Vd’ačný P., Epstein S. (2012) Class Cariacotrichea, a novel ciliate taxon from the an,oxic Cariaco Basin, Venezuela. Int. J. Syst. Evol. Microbiol. 62: 1425–1433
Phadke S. S., Zufall R. A. (2009) Rapid diversification of mating systems in ciliates. Biol. J. Linn. Soc. 98: 187–197
Quintela-Alonso P., Nitsche F., Arndt H. (2011) Molecular char,acterization and revised systematics of Microdiaphanosoma arcuatum (Ciliophora, Colpodea). J. Eukaryot. Microbiol. 58: 114–119
Rambaut A. (2006) FigTree. Institute of Evolutionary Biology, Univ. of Edinburgh. Available at: http://tree.bio.ed.ac.uk/software/figtree
Riley J. L., Katz L. A. (2001) Widespread distribution of extensive genome fragmentation in ciliates. Mol. Biol. Evol. 18: 1372– 1377
Ronquist F. R., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phy,logenetic inference under mixed models. Bioinformatics 19: 1572–1574
Small E. B., Lynn D. H. (1981) A new macrosystem for the phylum Ciliophora Doflein, 1901. BioSystems 14: 387–401 Snoeyenbos-West O. L. O., Cole J., Campbell A., Coats D. W., Katz A. (2004) Molecular phylogeny of phyllopharyngean ciliates and their group I introns. J. Eukaryot. Microbiol. 51: 441–450
Stamatakis A. (2006) RAxML-VI-HPC: Maximum likelihood,based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690
Stechmann A., Schlegel M., Lynn D. H. (1998) Phylogenetic re,lationships between prostome and colpodean ciliates tested by small subunit rRNA sequences. Mol. Phylogenet. Evol. 9: 48–54
Utz L. R. P., Simão T. L. L., Safi L. S. L., Eizirik E. (2010) Ex,panded phylogenetic representation of genera Opercularia and Epistylis sheds light on the evolution and higher-level taxonomy of peritrich ciliates (Ciliophora: Peritrichia). J. Eukaryot. Mi,crobiol. 57: 415–420
Vd’ačný P., Orsi W., Foissner W. (2010) Molecular and morpho,logical evidence for a sister group relationship of the classes Armophorea and Litostomatea (Ciliophora, Intramacronucleata, Lamellicorticata infraphyl. nov.), with an account of basal litos,tomateans. Eur. J. Protistol. 46: 298–309
Wuyts J., Perriere G., de Peer Y. V. (2004) The European ribosomal RNA database. Nucleic Acids Res. 32: D101–D103
Yi Z., Dunthorn M., Song W., Stoeck T. (2010) Increased taxon sampling using both unidentified environmental sequences and identified cultures improves phylogenetic inference in the Pro,rodontida (Ciliophora, Prostomatea). Mol. Phylogenet. Evol. 57: 937–941
Yi Z., Katz L. A., Song W. (2012) Assessing whether alpha-tubulin sequences are suitable for phylogenetic reconstruction of Cili,ophora with insights into its evolution in euplotids. PLoS ONE 7: e40635
Zhan Z., Xu K., Dunthorn M. (2013) Evaluating molecular support for and against the monophyly of the Peritrichia and phyloge,netic relationships within the Mobilida (Ciliophora, Oligohy-menophorea). Zool. Scripta 42: 213–226
Information: Acta Protozoologica, 2014, Volume 53, Issue 2, pp. 207 - 213
Article type: Original article
Natural History Museum, University of Oslo, Oslo, Norway
Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
Paris Lodron University of Salzburg, FB Ecology and Evolution, Salzburg, Austria
Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States of America; Department of Zoology, University of Sao Paulo, Sao Paulo, Brazil
Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
Published at: 26.05.2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 3327
Number of downloads: 2478