FAQ
Jagiellonian University logo

Achradina pulchra, a Unique Dinoflagellate (Amphilothales, Dinophyceae) with a Radiolarian-like Endoskeleton of Celestite (Strontium Sulfate)

Publication date: 24.11.2017

Acta Protozoologica, 2017, Volume 56, Issue 2, pp. 71-76

https://doi.org/10.4467/16890027AP.17.006.7481

Authors

,
Fernando Gómez
Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Maison de la Recherche en Environnement Naturel, 32 av. Foch, 62930 Wimereux, France
Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain
All publications →
,
Kostas Kiriakoulakis
Faculty of Science, School of Natural Sciences and Psychology, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, United Kingdom
All publications →
Enrique Lara
Real Jardín Botánico, CSIC, Madrid, España
All publications →

Titles

Achradina pulchra, a Unique Dinoflagellate (Amphilothales, Dinophyceae) with a Radiolarian-like Endoskeleton of Celestite (Strontium Sulfate)

Abstract

We examined the planktonic dinoflagellate Achradina pulchra by light and scanning electron microscopies from the South and North Atlantic oceans. The basket-like skeleton has been interpreted as a thick cell covering or pellicle of organic composition, or as a siliceous endoskeleton. The skeleton of Achradina is known only from fresh material, being absent in preserved samples, sediments or the fossil record. X-ray microanalysis revealed that the endoskeleton of Achradina is composed of celestite (strontium sulfate) with traces of barite (barium sulfate), two minerals that readily dissolve after cell death. To date, Acantharia and polycystine radiolarians (Retaria) were the only known organisms with a skeleton of this composition. We can now add a dinoflagellate to the list of such mineralized skeletons, which influence on the biogeochemical fluxes of strontium and barium in the oceans. Moreover, we provided the first molecular data for a skeleton-bearing dinoflagellate. Molecular phylogeny based on the SSU rRNA gene sequences revealed that Achradina and several environmental clones branched as an independent lineage within the short-branching dinokaryotic dinoflagellates. To date, seven clades of dinokaryotic dinoflagellates are known living as symbionts in the endoplasm of Acantharia and polycystine radiolarians. Because celestite built skeletons were unknown outside radiolarians, we suggested that the ancestors of Achradina acquired the genes implicated in the deposition of strontium and barium from radiolarian hosts though a horizontal gene transfer event between microbial eukaryotes.

References

Download references

Anderson O. R. (2014) Living together in the plankton: A survey of marine protist symbioses. Acta Protozool. 53: 29–38

Anderson O. R., Perry C. C., Hughes N. P. (1990) Transmission and scanning electron microscopic evidence for cytoplasmic deposition of strontium sulfate crystals in colonial radiolarian. Phil. Trans. R. Soc. B329: 8186

Bernstein R. E., Feely R. A., Byrne R. H., Lamb M. F., Michaels A. F. (1987) Acantharian fluxes and strontium to chlorinity ratios in the North Pacific Ocean. Science 237: 1490–1494

Decelle J., Siano R., Probert I., Poirier C., Not F. (2012) Multiple microalgal partners in symbiosis with the acantharian Acanthochiasma sp. (Radiolaria). Symbiosis 58: 233234

Dolven J. K., Lindqvist C., Albert V. A., Bjørklund K. R., Yuasa T., Takahashi O., Mayama S. (2007) Molecular diversity of alveolates associated with neritic north Atlantic radiolarians. Protist 158: 6576

Edgar R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 17921797

Fensome R. A., Taylor F. J. R., Norris G., Sarjeant W. A. S., Wharton D. I., Williams G. L. (1993) A Classification of Living and Fossil Dinoflagellates. Am. Mus. Nat. Hist., Micropaleontology special publication number 7. Sheridan Press, Hanover, Pennsylvania

Gast R. J. (2006) Molecular phylogeny of a potentially parasitic dinoflagellate isolated from the solitary radiolarian, Thalassicolla nucleata. J. Eukaryot. Microbiol53: 43–45

Gast R. J., Caron D. A. (1996) Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Mol. Biol. Evol. 13: 11921197

Gast R. J., Caron D. A. (2001) Photosymbiotic associations in planktonic foraminifera and radiolaria. Hydrobiol. 461: 17

Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98

Hernández-Becerril D. U., Bravo-Sierra E. (2004) New records of planktonic dinoflagellates (Dinophyceae) from the Mexican Pacific Ocean. Bot. Mar. 47: 417–423

Hollande A., Cachon J., Cachon-Enjumet M. (1962) Mise en évidence par la microscopie électronique, d’une capsule centrale chez divers péridiniens. Considérations sur les affinités entre dinoflagellés et radiolaires. C. R. Hebd. Seances Acad. Sci. 254: 2069–2071

Kiriakoulakis K., Vilas J. C., Blackbird S. J., Aristegui J., Wolff G. A. (2009) Seamounts and organic matter – Is there an effect? The case of Sedlo and Seine seamounts, Part 2. Composition of suspended particulate organic matter. Deep Sea Res. II 56: 26312645

Lara E., Mitchell E. A. D., Moreira D., López García P. (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162: 14–32

Lin S. (2011) Genomic understanding of dinoflagellates. Res. Microbiol. 165: 551569

López-García P., Rodríguez-Valera F., Pedrós-Alió C., Moreira D. (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603–607

Miller M. A., Pfeiffer W., Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8, 14 Nov. 2010, New Orleans, LA

Probert I., Siano R., Poirier C., Decelle J., Biard T., Tuji A., Suzuki N., Not F. (2014) Brandtodinium gen. nov. and B. nutricula comb. nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J. Phycol. 55: 388–399

Sournia A. (1986) Atlas du Phytoplancton Marin. Vol. I: Cyanophycées, Dictyochophycées, Dinophycées, Raphidophycées. CNRS, Paris

Stamatakis A., Hoover P., Rougemont J. (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75: 758–771

Taylor F. J. R. (1987) The Biology of Dinoflagellates. Blackwell, Oxford

Wisecaver J. H., Hackett J. D. (2011) Dinoflagellate genome evolution. Ann. Rev. Microbiol. 65: 369–387

Yuasa T., Horiguchi T., Mayama S., Takahashi O. (2016) Gymnoxanthella radiolariae gen. et sp. nov. (Dinophyceae), a dinoflagellate symbiont from solitary polycystine radiolarians. J. Phycol. 52: 89104

Information

Information: Acta Protozoologica, 2017, Volume 56, Issue 2, pp. 71-76

Article type: Original article

Authors

Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Maison de la Recherche en Environnement Naturel, 32 av. Foch, 62930 Wimereux, France

Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain

Faculty of Science, School of Natural Sciences and Psychology, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, United Kingdom

Real Jardín Botánico, CSIC, Madrid, España

Published at: 24.11.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Fernando Gómez (Author) - 33%
Kostas Kiriakoulakis (Author) - 33%
Enrique Lara (Author) - 34%

Article corrections:

-

Publication languages:

English