Let pbe a prime number, Fp a finite field with pelements, Fan algebraic extension of Fp and z a variable. We consider the structure of addition and the Frobenius map (i.e., x →xp) in the polynomial rings F[z] and in fields F(z) of rational functions. We prove that any question about F[z] in the structure of addition and Frobenius map may be effectively reduced to questions about the similar structure of the field F. Furthermore, we provide an example which shows that a fact which is true for addition and the Frobenius map in the polynomial rings F[z] fails to be true in F(z). As a consequence, certain methods used to prove model completeness for polynomials do not suffice to prove model completeness for similar structures for fields of rational functions F(z), a problem that remains open even for F= Fp.