Katarzyna Stapor
Schedae Informaticae, Volume 19, 2010, pp. 53 - 78
This paper presents several normalization techniques used in handwritten numeral recognition and their impact on recognition rates. Experiments with five different feature vectors based on geometric invariants, Zernike moments and gradient features are conducted. The recognition rates obtained using combination of these methods with gradient features and the SVM-rbf classifier are comparable to the best state-of-art techniques.