The topology on the space deltamathcal δ ε x
Wybierz format
RIS BIB ENDNOTEThe topology on the space deltamathcal δ ε x
Data publikacji: 09.2014
Universitatis Iagellonicae Acta Mathematica, 2013, Tom 51, s. 61-73
Autorzy
The topology on the space deltamathcal δ ε x
In this paper, we construct a locally convex topology on the vector space Ex. We also prove that with this topology it is a non-separable and non-re exive Frechet space.
1. ˚Ahag P., A Dirichlet problem for the complex Monge–Amp`ere operator in F (f ), Michigan Math. J., 55 (2007), 123–138.
2. ˚Ahag P., Czyz˙R., Modulability and duality of certain cones in pluripotential theory, J. Math. Anal. Appl., 361 (2010), 302–321.
3. Bedford E., Taylor B. A., A new capacity for plurisubharmonic functions, Acta Math.,149 no. 1–2 (1982), 1–40.
4. Benelkourchi S., Weighted Pluricomplex Energy, Potential Analysis, 31 (2009), 1–20.
5. Benelkourchi S., Guedj V., Zeriahi A., Plurisubharmonic functions with weak singular- ities, In: Proceedings from the Kiselmanfest, Uppsala University, V¨astra Aros (2009), 57–74.
6. Cegrell U., Pluricomplex energy, Acta Math., 180 (1998), 187–217.
7. Cegrell U., The general definition of the complex Monge–Amp`ere operator, Ann. Inst. Fourier (Grenoble), 54 (2004), 159–179.
8. Cegrell U., Convergence in Capacity, Canada Math. Bull., 55 (2012), 242–248.
9. Cegrell U., Ko-lodziej S., Zeriahi A., Subextension of plurisubharmonic functions with weak singularities, Math. Z., 250 no. 1 (2005), 7–22.
10. Cegrell U., Wiklund J., A Monge–Amp`ere norm for delta-plurisubharmonic functions, Math. Scad., 97 Vol. 2 (2005), 201–216.
11. Czyz˙ R., A note on Le-Pha. m’s paper-convergence in δEp spaces, Acta Math. Vietnam., 34 (2009), 401–410.
12. Demailly J.-P., Monge–Amp`ere operators, Lelong numbers and intersection theory, Com- plex analysis and geometry, Univ. Ser. Math, Plenium, New York (1993), 115–193.
13. Guedj V., Zeriahi A.,The weighted Monge–Amp`ere energy of quasiplurisubharmonic func- tions, J. Funct. Anal., 250 (2007), 442–482.
14. Le Mau Hai, Pham Hoang Hiep, Some weighted energy classes of plurisubharmonic func- tions, Potential Analysis, 34 (2011), 43–56.
15. Le Mau Hai, Pham Hoang Hiep, The topology on the space of δ−psh Functions in the Cegrell classes, Result. Math. 49 (2006), 127–140.
16. Le Mau Hai, Pham Hoang Hiep, Hoang Nhat Quy, Local property of the class Eχ,loc , J. Math. Anal. Appl., 402 (2013), 440–445.
17. Pham Hoang Hiep, Pluripolar sets and the subextension in Cegrell’s classes, Complex Var. and Elliptic Equations, 53 (2008), 675–684.
18. Nguyen Van Khue, Pham Hoang Hiep, A comparison principle for the complex Monge– Amp`ere operator in Cegrell’s classes and applications, Trans. Amer. Math. Soc., 361 (10) (2009), 5539–5554.
19. Klimek M., Pluripotential Theory, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications.
20. Kołodziej S., The range of the complex Monge–Amp`ere operator, II, Indiana Univ. Math. J, 44 (1995), 765–782.
21. Kołodziej S., The Monge–Amp`ere equation, Acta Math., 180 (1998), 69–117.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2013, Tom 51, s. 61-73
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
The topology on the space deltamathcal δ ε x
The topology on the space deltamathcal δ ε x
VietNam-Korea Friendship Information Technology College, Đà Nẵng, Wietnam
Publikacja: 09.2014
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2017
Liczba pobrań: 1254