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THE TOPOLOGY ON THE SPACE δEχ

by Hoang Nhat Quy

Abstract. In this paper, we construct a locally convex topology on the
vector space δEχ. We also prove that with this topology it is a non-separable
and non-reflexive Fréchet space.

1. Introduction. Let Ω be a hyperconvex domain in Cn; by PSH−(Ω) we
denote the set of negative plurisubharmonic (psh) functions on Ω. We denote
by H = H(Ω) any subclass of the functions in PSH−(Ω). Set δH = δH(Ω) =
H − H, that is the set of the functions u ∈ L1

loc(Ω) which can be written as
u = v − w, where v, w ∈ H. If H is a convex cone in PSH−(Ω) then δH is a
vector space. Let us recall the topology on the space δH when H is a special
subclass of negative plurisubharmonic functions.

In [7], Cegrell has introduced and studied some energy classes, especially
two classes F and E . He shows that E is the largest subclass on which the
Monge–Ampère operator is well defined and is continuous under decreasing
sequences of negative plurisubharmonic functions (see Theorem 4.5 in [7]).
In [10], Cegrell and Wiklund have introduced and investigated the vector space
δF equipped with the Monge–Ampère norm. They have shown that the space
δF is a non-separable Banach space and the topological dual space of δF can
be written as (δF)′ = F ′ − F ′ = δF ′. Since the function in δE belongs to δF
on every relative compact K in Ω then the topology on δE can be induced by
the family of semi-norms ‖.‖K ,K b Ω, where ‖.‖ is norm on δF (see [15]).
Moreover, in [15], the authors have shown that the topological space δE is a
non-separable and non-reflexive Fréchet space.
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In [6], Cegrell has introduced the class Ep (for p > 0) of all negative pluri-
subharmonic functions with well-defined and finite, pluricomplex p-energy. The
space δEp was studied by Åhag and Czyż in [2]. For each u ∈ δEp they define

‖u‖p = inf
u1−u2=u
u1,u2∈Ep

(∫
Ω

(
−(u1 + u2)

)p(
ddc(u1 + u2)

)n) 1
n+p

.

This is a quasi-norm on δEp and moreover (δEp, ‖.‖p) is a quasi-Banach space
for p 6= 1 and (δE1, ‖.‖1) is a Banach space (see Theorem 4.7 in [2]).

The weighted energy class Eχ that is a generalization of the class Ep has
been introduced and studied by Benelkourchi, Guedj and Zeriahi in [4] and [5].
The aim of the present paper is to construct and investigate a locally convex
topology on δEχ and to show that δEχ is a non-separable and non-reflexive
Fréchet space with this topology.

2. Preliminaries. In this section, we recall some definitions and proper-
ties of psh function classes, as well as elements of pluripotential theory that will
be used throughout this paper. They all may be found in [1,3–7,12,16,21].

2.1. Unless otherwise specified, Ω will be a bounded hyperconvex domain
in Cn, and χ : R− −→ R+ is a decreasing function.

2.2. The following energy classes of psh functions were introduced and
investigated by Cegrell in [6] and [7]:

E0 =

{
ϕ ∈ PSH(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

∫
Ω

(ddcϕ)n < +∞
}

F =

{
ϕ ∈ PSH−(Ω) : ∃E0 3 ϕj ↘ ϕ, sup

j

∫
Ω

(ddcϕj)
n < +∞

}

E =

{
ϕ ∈ PSH−(Ω) : ∀z0 ∈ Ω, ∃ a neighbourhood ω 3 z0,

E0 3 ϕj ↘ ϕ on ω, sup
j

∫
Ω

(ddcϕj)
n < +∞

}
.

It is clear that E0 ⊂ F ⊂ E , and by [7], they are convex cones and satisfy the
max property (see Theorem 2.1).

2.3. The following weighted energy classes of psh functions were intro-
duced and investigated in [4,5] by Benelkourchi, Guedj and Zeriahi.

Eχ =

ϕ ∈ PSH−(Ω) : ∃ E0 3 ϕj ↘ ϕ, sup
j>1

∫
Ω

χ(ϕj)(dd
cϕj)

n < +∞

 .
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Note that from the proofs of Theorems 1.4 and 1.5 in [1], it follows that if
ϕ ∈ Eχ then lim

z→ξ
ϕ(z) = 0 for all ξ ∈ ∂Ω. In [14], the authors have shown that

if χ 6≡ 0 then Eχ ⊂ E .

Theorem 2.1. (see [16]). Suppose the function χ is such that χ(2t) 6 cχ(t)
with some c > 1. Then Eχ has the following properties:

i. Eχ is a convex cone, i.e. if ϕ,ψ ∈ Eχ and a, b > 0 then aϕ+ bψ ∈ Eχ;
ii. Eχ satisfies the max property, i.e. if ϕ ∈ Eχ and ψ ∈ PSH−(Ω) then

max(ϕ,ψ) ∈ Eχ.

2.4. For every hyperconvex domain D b Ω and ϕ ∈ PSH−(Ω) we set

hϕD,Ω = sup{u ∈ PSH−(Ω) : u 6 ϕ on D}.

Then the function hϕD,Ω is the largest negative plurisubharmonic function equal

to ϕ on D. And by using the arguments similar to those in [19] we get

supp(ddchϕD,Ω)n ⊂ D b Ω.

The following class was introduced and studied in [16] by Hai, Hiep and Quy

Eχ,loc = {ϕ ∈ PSH−(Ω) : hϕD,Ω ∈ Eχ(Ω), ∀ D b Ω}.

Theorem 2.2. (see [16]). The class Eχ,loc has the following properties:

i. The class Eχ,loc can be described as follows

Eχ,loc = {ϕ ∈ PSH−(Ω) : for all hyperconvex domains D b Ω,

∃ψ ∈ Eχ(Ω) : ψ = ϕ on D};

ii. The class Eχ,loc has the local property. Here, a class K(Ω) ⊂ PSH−(Ω)
is said to have the local property if ϕ ∈ K(Ω) implies ϕ ∈ K(D) for all
hyperconvex domains D b Ω and if ϕ ∈ PSH−(Ω), ϕ|Ωi ∈ K(Ωi), ∀ i ∈ I
with Ω =

⋃
i∈I

Ωi, implies ϕ ∈ K(Ω).

2.5. Now we shall introduce the space δEχ and give some necessary ele-
ments that will be used to construct the topology on this space. We set

δEχ = Eχ − Eχ
= {u ∈ L1

loc(Ω) : ∃v, w ∈ Eχ, u = v − w}.

If the function χ is such that χ(2t) 6 cχ(t) with some c > 1 then the class Eχ
is a convex cone and so δEχ is a vector space.
For u ∈ Eχ we set

eχ(u) =

∫
Ω
χ(u)(ddcu)n.
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For each m ∈ N we set

Um = {u = v − w : v, w ∈ Eχ, eχ(v) <
1

m
, eχ(w) <

1

m
}.

In the next section, we are going to study some properties of the family of
subsets Um,m ∈ N. Then we will construct the topology on the vector space
δEχ generated by that family.

2.6. We recall here the definition of capacity in the sense of Bedford and
Taylor (see [3] for further information).

cap(E) = sup

{∫
E

(ddcu)n : u ∈ PSH(Ω),−1 6 u 6 0

}
,

for every Borel set E in Ω. It is proved in [3] that

cap(E) =

∫
E

(ddch∗E,Ω)n,

where h∗E,Ω is the upper regularization of the relative extremal function hE,Ω
for E (relative to Ω), i.e.,

hE,Ω = sup{u ∈ PSH−(Ω) : u 6 −1 on E}.

2.7. We recall the notion of the convergence in capacity. Let Ω be a domain
in Cn and uj (j = 1, 2, 3, ...) and u be psh on Ω. We say that the sequence {uj}
is convergent to u in capacity if for each ε > 0 we have

lim
j→+∞

cap({z ∈ K : |uj(z)− u(z)| > ε}) = 0, for all K b Ω.

3. The topology on the space δEχ. In this section, we will prove that
the vector space δEχ is a locally convex topological space; moreover it is a
Fréchet space. First, we need some lemmas.

Lemma 3.1. The set Um is a balanced subset in the vector space δEχ, i.e.
∀u ∈ Um we have au ∈ Um,∀|a| 6 1.

Proof. Given v ∈ Eχ and 0 6 a 6 1. We have

eχ(av) =

∫
Ω
χ(av)(ddc(av))n = an

∫
Ω
χ(av)(ddcv)n

6
∫

Ω
χ(v)(ddcv)n = eχ(v).

From this we infer that Um is a balanced set.

Lemma 3.2. The set Um is an absorbing subset in the vector space δEχ,
i.e. ∀u ∈ δEχ, ∃ε > 0 : au ∈ Um,∀|a| < ε.
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Proof. First, for any t ∈ R− we have

χ(2nt) 6 cχ(2n−1t) 6 ... 6 cnχ(t).

For a > 1 we have

χ(at) = χ(2log2at) 6 χ(2[log2a]+1t)

6 c[log2a]+1χ(t) 6 clog2a+1χ(t)

= c.clog2aχ(t) = c.alog2cχ(t)·

Now, given v ∈ Eχ and a > 1, from the result above we have

eχ(av) =

∫
Ω
χ(av)(ddc(av))n = an

∫
Ω
χ(av)(ddcv)n

6 c.alog2c+n
∫

Ω
χ(v)(ddcv)n = c.alog2c+neχ(v)·

From this result we imply that Um is a absorbing set.

Proposition 3.3. In the class Eχ, the following estimates hold.

i. If ϕ,ψ ∈ Eχ then

(3.1) eχ(ϕ+ ψ) 6 22nc2 [eχ(ϕ) + eχ(ψ)] .

ii. If ϕ,ψ ∈ Eχ are such that ϕ > ψ then

(3.2) eχ(ϕ) 6 2nceχ(ψ).

Proof. By the definition of the class Eχ it is enough to prove the propo-
sition when ϕ,ψ ∈ E0.
i. First, as in the proof of Proposition 3.4 in [9], we have∫

{ϕ<−t}
(ddcϕ)n 6 tncap({ϕ < −t}), ∀ϕ ∈ E0(3.3)

tncap({ϕ < −2t}) 6
∫
{ϕ<−t}

(ddcϕ)n,∀t > 1, ∀ϕ ∈ E0.(3.4)

We have

eχ(ϕ) =

∫
Ω
χ(ϕ)(ddcϕ)n

=

∫ +∞

0
−χ′(−t)

∫
{ϕ<−t}

(ddcϕ)ndt+ χ(0)

∫
Ω

(ddcϕ)n.

We set

e0(ϕ) =

∫
Ω

(ddcϕ)n.
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By Lemma 2.5 in [10], we have

e0(ϕ+ ψ)
1
n 6 e0(ϕ)

1
n + e0(ψ)

1
n .

We set

ẽχ(ϕ) =

∫ +∞

0
−χ′(−t)tncap({ϕ < −t})dt.

Applying formula (3.3) we infer

(3.5) eχ(ϕ) 6 ẽχ(ϕ) + χ(0)e0(ϕ),∀ϕ ∈ E0.

Applying formula (3.4) we have

ẽχ(ϕ) 6
∫ +∞

0
−χ′(−t)2n

∫
{ϕ<− t

2
}
(ddcϕ)ndt

= 2n
∫ +∞

0
−χ′(−t)

∫
{ϕ<− t

2
}
(ddcϕ)ndt ( set χ̂(t) = χ(2t))

= 2n−1

∫ +∞

0
−χ̂′(− t

2
)

∫
{ϕ<− t

2
}
(ddcϕ)ndt

= 2n
∫ +∞

0
−χ̂′(−t)

∫
{ϕ<−t}

(ddcϕ)ndt.

So we imply

ẽχ(ϕ) + χ(0)e0(ϕ) 6 2n
∫ +∞

0
−χ̂′(−t)

∫
{ϕ<−t}

(ddcϕ)ndt+ χ̂(0)e0(ϕ)

6 2neχ̂(ϕ) = 2n
∫

Ω
χ(2ϕ)(ddcϕ)n

6 2nc

∫
Ω
χ(ϕ)(ddcϕ)n = 2nceχ(ϕ).

Therefore, we have

(3.6) ẽχ(ϕ) + χ(0)e0(ϕ) 6 2nceχ(ϕ).

For every a ∈ [0, 1] we have

ẽχ((1− a)ϕ+ aψ) =

∫ +∞

0
−χ′(−t)tncap({(1− a)ϕ+ aψ < −t})dt

6
∫ +∞

0
−χ′(−t)tncap({ϕ < −t} ∪ {ψ < −t})dt

6
∫ +∞

0
−χ′(−t)tn[cap({ϕ < −t}) + cap({ψ < −t})]dt

= ẽχ(ϕ) + ẽχ(ψ).
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The following inequalities are straightforward

e0(ϕ+ ψ) 6
(
e0(ϕ)

1
n + e0(ψ)

1
n
)n

6 2n−1(e0(ϕ) + e0(ψ)),

e0

(
ϕ+ ψ

2

)
6

1

2
[e0(ϕ) + e0(ψ)].

Using the results above we obtain the following estimates

eχ(ϕ+ ψ) = eχ

(
2 · ϕ+ ψ

2

)
6 2nceχ

(
ϕ+ ψ

2

)
6 2nc

[
ẽχ(

ϕ+ ψ

2
) + χ(0)e0(

ϕ+ ψ

2
)

]
6 2nc

[
ẽχ(ϕ) + ẽχ(ψ) +

χ(0)

2
(e0(ϕ) + e0(ψ))

]
6 2nc [ẽχ(ϕ) + χ(0)e0(ϕ) + ẽχ(ψ) + χ(0)e0(ψ)]

6 2nc [2nceχ(ϕ) + 2nceχ(ψ)]

= 22nc2[eχ(ϕ) + eχ(ψ)].

So i. is proved.
ii. It is a consequence of (3.5) and (3.6).

Remark 3.4. It follows from Proposition 3.3 that for every Um (m > 1)
we can find k (by (3.1) we can choose k = m([22nc2]+1)) such that the convex
hull of the set Uk is contained in Um.

Theorem 3.5. The vector space δEχ is a Fréchet space.

Proof. It follows from Lemma 3.1, Lemma 3.2 and Remark 3.4 that the
family A of convex hulls of sets Um,m > 1 is a family of absorbing, balanced,
convex sets in the vector space δEχ. So there is a locally convex topology on
this space such that the family A becomes a neighbourhood basis of origin. It
remains to show completeness.
Suppose {um} is a Cauchy sequence in the space δEχ. Then for every m > 1
we can find jm such that uj − uk ∈ U(22n+1c2)m , ∀j, k > jm. We can choose the
sequence {jm} such that jm+1 > jm, ∀m > 0. We have

ujm = uj1 + (uj2 − uj1) + ...+ (ujm − ujm−1).

Since ujk ∈ δEχ,∀k = 1, ..,m we can write ujk − ujk−1
= vk − wk, where

vk, wk ∈ Eχ such that eχ(vk) <
1

(22n+1c2)k−1 , eχ(wk) <
1

(22n+1c2)k−1 ·
So we have

ujm = uj1 + (v2 − w2) + ...+ (vm − wm)

= uj1 + (v2 + ...+ vm)− (w2 + ...+ wm).
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By applying (3.1) repeatedly we arrive that

eχ

( m∑
k=2

vk

)
6 22nc2eχ(v2) + (22nc2)2eχ(v3) + ...+ (22nc2)m−1eχ(vm)

6
1

2
+

1

22
+ ...+

1

2m−1
< +∞.

So the sequence {
∑m

k=2 vk}m>0 is a decreasing sequence with bounded total
χ-energy, and in the same way the sequence {

∑m
k=2wk}m>0 is. These infer that

the subsequence {ujm} is convergent in δEχ and therefore {um} is a convergent
Cauchy sequence.

4. On the convergence in the space δEχ. We will show a generalization
of the Theorem 4.1 in [15] and Theorem 3.2 in [11].

Theorem 4.1. Let a sequence {uj}j>1 ⊂ δEχ. If the sequence {uj} con-
verges to a function u in δEχ as j tends to +∞ then {uj} converges to u in
capacity.

Proof. Without loss of the generality we can assume that u = 0. By
assumptions we have

∀Um, ∃j0 > 1 : uj ∈ Um,∀j > i0.

We write uj = vj − wj , where vj , wj ∈ Eχ are such that eχ(vj) → 0 and
eχ(wj)→ 0 as j → +∞. We set

χn(t) =

∫ 0

t
dt1

∫ 0

t1

...

∫ 0

tn−1

χ(tn)dtn·

Given ε > 0 and K b Ω. For any ψ ∈ PSH(Ω),−1 6 ψ 6 0, by Theorem 4.4
in [14], we have∫

{|vj |>ε}∩K
(ddcψ)n 6

1

χn(−ε)

∫
Ω
χn(vj)(dd

cψ)n 6
eχ(vj)

χn(−ε)
·

Therefore we get

cap({|vj | > ε} ∩K) 6
eχ(vj)

χn(−ε)
→ 0,

as j → +∞. And similarly

cap({|wj | > ε} ∩K) 6
eχ(wj)

χn(−ε)
→ 0,

as j → +∞. Hence

cap({|uj | > ε} ∩K) 6 cap({|vj | >
ε

2
} ∩K) + cap({|wj | >

ε

2
} ∩K)→ 0,

as j → +∞ and the proof is complete.
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5. The Monge–Ampère operator on the space δEχ. In [10], the
authors have extended the Monge–Ampère operator from the class F to δF .
Next, in [15], the Monge–Ampère operator has been extended from the class E
to δE . Here, we note that if χ 6≡ 0 then Eχ ⊂ E (see [14] for further information)
so δEχ ⊂ δE . Therefore, the Monge–Ampère operator is well defined on the
space δEχ, but for the convenience we will recall here the extension in [15].
First, we need the following lemma (see Lemma 5.1 in [15]).

Lemma 5.1. Let uj1, u
j
2, v

j
1, v

j
2 ∈ E be such that uj1−u

j
2 = vj1−v

j
2, 1 6 j 6 n.

Then

(ddcu1
1−ddcu1

2)∧ ...∧ (ddcun1 −ddcun2 ) = (ddcv1
1−ddcv1

2)∧ ...∧ (ddcvn1 −ddcvn2 )·

It follows from the Lemma above that we can extend the Monge–Ampère
operator (ddc.)n from the class E to δE as follows. Let u ∈ δE and K b Ω.
Then there exist u1, u2 ∈ F such that u = u1 − u2 on K. We set

(ddcu)n |K=
n∑
i=0

(−1)i
(
n

i

)
(ddcu2)i ∧ (ddcu1)n−i |K ·

The following lemma gives us a relation between the convergence of the
functions on the space δEχ and the convergence of the operator (ddc·)n on this
space.

Theorem 5.2. Assume that the sequence {uj} ⊂ δEχ is such that uj →
u ∈ δEχ in the topology of the space δEχ as j → +∞. Then ‖(ddcuj)n −
(ddcu)n‖(D)→ 0 as j → +∞, ∀D b Ω.

First, we need the following lemma

Lemma 5.3. Let {uj} ⊂ Eχ be such that eχ(uj) → 0 then (ddcuj)
n → 0

weakly, as j → +∞.

Proof. Without loss of the generality, we can assume that uj ∈ E0. By
Kolodziej’s theorem ( [20]) there exists vj ∈ E0 such that

(ddcvj)
n = 1{uj6−1}(dd

cuj)
n,

where 1E is the characteristic function of E. We have

(ddc[max(uj ,−1) + vj ])
n > (ddc max(uj ,−1))n + (ddcvj)

n > (ddcuj)
n.
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By the comparison principle, we get uj > max(uj ,−1) + vj . This implies that

h
uj
D,Ω > h

max(uj ,−1)
D,Ω + vj for all D b Ω. By Corollary 5.6 in [7] we have∫

D

(ddcuj)
n 6

∫
Ω

(ddch
uj
D,Ω)n

6
∫
Ω

(
ddc

(
h

max(uj ,−1)
D,Ω + vj

))n
=

n∑
k=0

(
k

n

)∫
Ω

(
ddch

max(uj ,−1)
D,Ω

)k
∧ (ddcvj)

n−k

6
n∑
k=0

(
k

n

)∫
Ω

(
ddch

max(uj ,−1)
D,Ω

)n k
n
∫

Ω

(ddcvj)
n

n−k
n

.

We have∫
Ω

(ddcvj)
n =

∫
{uj6−1}

(ddcuj)
n 6

1

χ(−1)

∫
{uj6−1}

χ(uj)(dd
cuj)

n 6
eχ(uj)

χ(−1)
→ 0,

as j →∞. By Theorem 4.1 and Main theorem in [8] we get∫
Ω

(
ddch

max(uj ,−1)
D,Ω

)n
=

∫
D̄

(
ddch

max(uj ,−1)
D,Ω

)n
→ 0,

as j →∞. Combining these and the inequalities above we get
∫
D

(ddcuj)
n → 0,

as j →∞, for all D b Ω.

Proof of Theorem 5.2. Since uj−u→ 0 as j → +∞ in δEχ then there
exist vj , wj , v, w ∈ Eχ such that uj − u = vj − wj and eχ(vj)→ 0, eχ(wj)→ 0
as j → +∞ and u = v − w. We have

‖(ddcuj)n − (ddcu)n‖(D) 6 Cn

n−1∑
k=0

∫
D

(ddc(v + w))k ∧ (ddc(vj + wj))
n−k,

where Cn is a constant. It is enough to prove that∫
D

(ddcϕ)k ∧ (ddcϕj)
n−k → 0 as j → +∞, ∀k = 0, ..., n− 1,
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where ϕ = v + w and ϕj = vj + wj . Indeed, let D b K b Ω. By Corollary 5.6
in [7], Proposition 3.3 and Lemma 5.3, we have∫

D

(ddcϕ)k ∧ (ddcϕj)
n−k 6

∫
Ω

(ddchϕK,Ω)k ∧ (ddch
ϕj
K,Ω)n−k

6

∫
Ω

(ddchϕK,Ω)n

 k
n [∫

Ω
(ddch

ϕj
K,Ω)n

]n−k
n

→ 0 as j → +∞.

Theorem 5.4. The Fréchet space δEχ is not separable and not reflexive.

Proof. The idea of proof is taken from [15].
Let z0 ∈ Ω, then there exists a number r0 > 0 such that

B(z0, 3r0) = {z ∈ Cn : ‖z − z0‖ < 3r0} ⊂ Ω.

For each r ∈ (0, r0), we denote by hr the relative extremal function of the ball
B(z0, r) and Ω, i.e. hr is defined by

hr = hB(z0,r),Ω = sup{ϕ ∈ PSH−(Ω) : ϕ 6 −1 on B(z0, r)}.
Since hr ∈ E0 then hr ∈ δEχ and we also have

supp(ddchr)
n ⊂ S(z0, r) = {z ∈ Cn : ‖z − z0‖ = r}.

First, we prove that δEχ is not separable. Suppose that the space δEχ is
separable, i.e. there exists a sequence {uj}j=1,2,... that is dense in δEχ. Note
that the set

Aj = {r ∈ (0, r0) : (ddcuj)
n(S(z0, r)) 6= 0}

is countable and so ∪∞j=1Aj is, and therefore there exists t ∈ (0, r0) \ ∪∞j=1Aj .

This means that (ddcuj)
n(S(z0, t)) = 0, for each j = 1, 2, ... On the other

hand, since the sequence {uj} is dense in δEχ and ht ∈ Eχ, then there exists a
subsequence {ukj}j=1,2,... such that ukj → ht as j → +∞. By Theorem 5.2 we
have

‖(ddcukj )
n − (ddcht)

n‖(S(z0, t))→ 0 as j → +∞.
From this we imply

|(ddcukj )
n(S(z0, t))− (ddcht)

n(S(z0, t))| → 0 as j → +∞.

Since (ddcuj)
n(S(z0, t)) = 0, for each j = 1, 2, ..., then (ddcht)

n(S(z0, t)) = 0.
Moreover, since supp(ddcht)

n ⊂ S(z0, t), we obtain (ddcht)
n = 0. By the com-

parison theorem we have ht = 0. This is a contradiction.
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Now, we prove that δEχ is not reflexive. Assume that the space δEχ is
reflexive. We have

eχ(hr) =

∫
Ω

χ(hr)(dd
chr)

n

6 χ(−1)

∫
Ω

(ddchr)
n

= χ(−1)cap(B(z0, r))

6 χ(−1)cap(B(z0, 2r0)),

for all r ∈ (0, 2r0). This implies that the set {hr0(1+ 1
j

)}j>1 is bounded in δEχ.

Then there exists a subsequence

{
uj = hr0(1+ 1

mj
)

}
j>1

⊂
{
hr0(1+ 1

j
)

}
j>1

which

is weakly convergent to u. Since a convex set in a locally convex space has the
same closure in the original and weak topologies then we can find a sequence

of convex combinations

{
vk =

sk∑
l=1

aklul+k

}
k>1

(where akl > 0 and
sk∑
l=1

akl = 1)

such that vk → u in δEχ. By Theorem 4.1, we get vk → u in capacity. Moreover,
since vk → hr0 pointwise, we get u = hr0 . By Theorem 5.2, we get

‖(ddcvk)n − (ddchr0)n‖(S(z0, r0))→ 0.

On the other hand, we have vk = −1 on B(z0, r0(1 + 1
mk+sk

)). Therefore

(ddchr0)n(S(z0, r0)) = 0. Moreover, since supp(ddchr0)n ⊂ S(z0, r0), we in-
fer that (ddchr0)n = 0. By the comparison theorem we have hr0 = 0. This is a
contradiction.
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