The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEThe degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
Data publikacji: 05.06.2012
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 89 - 106
https://doi.org/10.4467/20843828AM.12.003.1125Autorzy
The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
We prove existence, uniqueness and convergence of solutions of the degenerate J- ow on Kahler surfaces. As an application, we establish the properness of the Mabuchi energy for Kahler classes in a certain subcone of the Kahler cone on minimal surfaces of general type.
1. Błocki Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, No. 5 (2005), 1735–1756.
2. Chen X., On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 12 (2000), 607–623.
3. Chen X., A new parabolic flow in K¨ahler manifolds, Comm. Anal. Geom., 12, No. 4 (2004), 837–852.
4. Cherrier P., E´quations de Monge–Amp`ere sur les vari´et´es hermitiennes compactes, Bull. Sci. Math. (2), 111, No. 4 (1987), 343–385.
5. Chinh L. H., Solutions to degenerate complex Hessian equations, preprint, arXiv: 1202.2436.
6. Dinew S., Ko-lodziej S., Liouville and Calabi–Yau type theorems for complex Hessian equations, preprint, arXiv.org/1203.3995.
7. Donaldson S. K., Moment maps and diffeomorphisms, Asian J. Math., 3, No. 1 (1999), 1–16.
8. Donaldson S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62 (2002), 289–349.
9. Fang H., Lai M., On the geometric flows solving K¨ahlerian inverse σk equations, Pacific J. Math., 258, No. 2 (2012), 291–304.
10. Fang H., Lai M., Convergence of general inverse σk -flow on K¨ahler manifolds with Calabi Ansatz, preprint, arxiv:1203.5253.
11. Fang H., Lai M., Ma X., On a class of fully nonlinear flows in K¨ahler geomety, J. Reine Angew. Math., 653 (2011), 189–220.
12. Fang H., Lai M., Song J., Weinkove B., The J -flow on K¨ahler surfaces: a boundary case, preprint, arXiv:1204.4068.
13. Guan B., Li Q., A Monge–Ampere Type Fully Nonlinear Equation on Hermitian Mani- folds, Discrete Contin. Dyn. S., series B, 17, No. 6 (2012), 1991–1999.
14. Hou Z., Complex Hessian equation on K¨ahler manifold, Int. Math. Res. Not. IMRN 2009, No. 16, 3098–3111.
15. Hou Z., Ma X. N., Wu D., A second order estimate for complex Hessian equations on a compact K¨ahler manifold, Math. Res. Lett., 17, No. 3 (2010), 547–561.
16. Kołodziej S., The complex Monge–Amp`ere equation, Acta Math., 180, No. 1 (1998), 69–117.
17. Kołodziej S., The Monge–Amp`ere equation on compact K¨ahler manifolds, Indiana Univ. Math. J., 52, No. 3 (2003), 667–686.
18. Kołodziej S., The complex Monge–Amp`ere equation and pluripotential theory, Mem. Amer. Math. Soc., 178, No. 840 (2005).
19. Li S.-Y., On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., 8, No. 1 (2004), 87–106
20. Li Y., A priori estimates on Donaldson equation over compact Hermitian manifolds, preprint, arXiv: 1210.0254.
21. Phong D. H., Song J., Sturm J., Weinkove B., The Moser–Trudinger inequality on K¨ahler–Einstein manifolds, Amer. J. Math., 130, No. 4 (2008), 1067–1085.
22. Phong D. H., Sturm J., The Dirichlet problem for degenerate complex Monge–Amp`ere equations, Comm. Anal. Geom., 18, No. 1 (2010), 145–170.
23. Panov D., Ross J., Slope stability and exceptional divisors of high genus, Math. Ann., 343, No. 1 (2009), 79–101.
24. Ross J., Thomas R., An obstruction to the existence of constant scalar curvature K¨ahler metrics, J. Differential Geom., 72, No. 3 (2006), 429–466.
25. Song J., Tian G., The K¨ahler–Ricci flow through singularities, preprint, arXiv:0909.4898 [math.DG].
26. Song J., Weinkove B., The convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61, No. 2 (2008), 210–229.
27. Song J., Weinkove B., Contracting exceptional divisors by the K¨ahler–Ricci flow, Duke Math. J. 162, No. 2 (2013), 367–415.
28. Tian G., K¨ahler–Einstein metrics with positive scalar curvature, Invent. Math., 130, No. 1 (1997), 1–37.
29. Tian G., Canonical metrics in K¨ahler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zu¨rich. Birkh¨auser Verlag, Basel, 2000.
30. Tosatti V., Weinkove B., On the evolution of a Hermitian metric by its Chern–Ricci form, preprint, arXiv:1201.0312.
31. Tsuji H., Existence and degeneration of K¨ahler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann., 281 (1988), 123–133.
32. Weinkove B., Convergence of the J -flow on K¨ahler surfaces, Comm. Anal. Geom., 12, No. 4 (2004), 949–965.
33. Weinkove B., On the J -flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom., 73, No. 2 (2006), 351–358.
34. Yau S.-T., On the Ricci curvature of a compact K¨ahler manifold and the complex Monge– Amp`ere equation, I, Comm. Pure Appl. Math., 31 (1978), 339–411.
35. Yau S.-T., Open problems in geometry, Proc. Symposia Pure Math., 54 (1993), 1–28.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 89 - 106
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
Rutgers University, Piscataway, NJ, USA
Northwestern University
Publikacja: 05.06.2012
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1923
Liczba pobrań: 1120