FAQ

The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type

Data publikacji: 05.06.2012

Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 89 - 106

https://doi.org/10.4467/20843828AM.12.003.1125

Autorzy

,
Jian Song
Rutgers University, Piscataway, NJ, USA
Wszystkie publikacje autora →
Ben Weinkove
Northwestern University
Wszystkie publikacje autora →

Tytuły

The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type

Abstrakt

We prove existence, uniqueness and convergence of solutions of the degenerate J- ow on Kahler surfaces. As an application, we establish the properness of the Mabuchi energy for Kahler classes in a certain subcone of the Kahler cone on minimal surfaces of general type.

Bibliografia

1. Błocki Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, No. 5 (2005), 1735–1756.

2. Chen X., On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 12 (2000), 607–623.

3. Chen X.,  A  new parabolic flow in  K¨ahler  manifolds, Comm. Anal.  Geom., 12, No. 4 (2004), 837–852.

4. Cherrier P., E´quations de Monge–Amp`ere sur les vari´et´es hermitiennes compactes, Bull. Sci. Math. (2), 111, No. 4 (1987), 343–385.

5. Chinh  L. H.,  Solutions  to  degenerate complex Hessian equations,  preprint,   arXiv: 1202.2436.

6. Dinew S., Ko-lodziej S., Liouville  and Calabi–Yau type theorems for  complex Hessian equations, preprint,  arXiv.org/1203.3995.

7. Donaldson S. K., Moment maps and diffeomorphisms, Asian J. Math.,  3, No. 1 (1999), 1–16.

8. Donaldson S. K., Scalar curvature and stability of toric  varieties, J. Differential  Geom., 62 (2002), 289–349.

9. Fang H., Lai M., On the geometric flows solving K¨ahlerian inverse σk  equations, Pacific J. Math., 258, No. 2 (2012), 291–304.

10. Fang H., Lai M., Convergence of general inverse σk -flow on K¨ahler manifolds with Calabi Ansatz, preprint,  arxiv:1203.5253.

11. Fang H., Lai M., Ma X., On a class of fully nonlinear flows in K¨ahler geomety, J. Reine Angew. Math., 653 (2011), 189–220.

12. Fang H., Lai M., Song J., Weinkove B.,  The J -flow on K¨ahler surfaces: a boundary case,  preprint,  arXiv:1204.4068.

13. Guan B., Li Q., A Monge–Ampere Type Fully Nonlinear Equation on Hermitian  Mani- folds,  Discrete Contin. Dyn. S., series B, 17, No. 6 (2012), 1991–1999.

14. Hou Z., Complex Hessian equation on K¨ahler manifold, Int. Math. Res. Not. IMRN 2009, No. 16,  3098–3111.

15. Hou Z., Ma X. N., Wu D., A second order estimate for complex Hessian equations on a compact  K¨ahler manifold, Math. Res. Lett.,  17, No. 3 (2010), 547–561.

16. Kołodziej S., The complex Monge–Amp`ere  equation, Acta  Math.,  180,  No. 1 (1998), 69–117.

17. Kołodziej S., The Monge–Amp`ere equation on compact K¨ahler manifolds, Indiana Univ. Math. J., 52, No. 3 (2003), 667–686.

18. Kołodziej S., The  complex Monge–Amp`ere  equation and pluripotential  theory,  Mem. Amer. Math. Soc., 178, No. 840 (2005).

19. Li S.-Y., On the Dirichlet  problems for symmetric function equations of the eigenvalues of the  complex Hessian, Asian J. Math., 8, No. 1 (2004), 87–106

20. Li  Y.,  A  priori  estimates on Donaldson equation over compact Hermitian  manifolds,  preprint,  arXiv:   1210.0254.

21. Phong D. H.,  Song J.,  Sturm  J.,  Weinkove  B.,  The  Moser–Trudinger  inequality  on K¨ahler–Einstein manifolds, Amer. J. Math., 130, No. 4 (2008), 1067–1085.

22. Phong D. H., Sturm  J., The Dirichlet  problem for degenerate complex Monge–Amp`ere equations,  Comm. Anal. Geom., 18, No. 1 (2010), 145–170.

23. Panov D., Ross J., Slope stability  and exceptional divisors of high genus, Math.  Ann., 343, No. 1 (2009), 79–101.

24. Ross J., Thomas R., An obstruction to the existence of constant scalar curvature K¨ahler  metrics, J. Differential  Geom., 72, No. 3 (2006), 429–466.

25. Song J., Tian G., The K¨ahler–Ricci flow through singularities, preprint, arXiv:0909.4898 [math.DG].

26. Song J., Weinkove B.,  The convergence and singularities of the J-flow with applications to the  Mabuchi energy, Comm. Pure Appl. Math., 61, No. 2 (2008), 210–229.

27. Song J., Weinkove B., Contracting  exceptional divisors by the K¨ahler–Ricci  flow, Duke Math. J. 162, No. 2 (2013), 367–415.

28. Tian G., K¨ahler–Einstein metrics with positive scalar curvature, Invent. Math., 130, No. 1 (1997), 1–37.

29. Tian G., Canonical metrics in K¨ahler geometry. Notes taken by Meike Akveld. Lectures in  Mathematics ETH Zu¨rich. Birkh¨auser Verlag, Basel, 2000.

30. Tosatti  V.,  Weinkove  B.,  On the evolution of a Hermitian  metric  by its Chern–Ricci form,  preprint,  arXiv:1201.0312.

31. Tsuji  H., Existence and degeneration of K¨ahler–Einstein  metrics  on minimal  algebraic  varieties of general type, Math. Ann., 281 (1988), 123–133.

32. Weinkove B., Convergence of the J -flow on K¨ahler  surfaces, Comm. Anal. Geom., 12, No. 4  (2004), 949–965.

33. Weinkove  B.,  On the J -flow  in  higher dimensions and the lower boundedness  of the Mabuchi energy, J. Differential  Geom., 73, No. 2 (2006), 351–358.

34. Yau S.-T.,  On the Ricci curvature of a compact K¨ahler manifold and the complex Monge– Amp`ere  equation, I, Comm. Pure Appl. Math., 31 (1978), 339–411.

35. Yau S.-T., Open problems in geometry, Proc. Symposia Pure Math., 54 (1993), 1–28.

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 89 - 106

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type

Polski:

The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type

Autorzy

Rutgers University, Piscataway, NJ, USA

Northwestern University

Publikacja: 05.06.2012

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Jian Song (Autor) - 50%
Ben Weinkove (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski