FAQ

Sufficient conditions for the convergence of nonautonomous stochastic search for a global minimum

Data publikacji: 05.06.2012

Universitatis Iagellonicae Acta Mathematica, 2011, Tom 49, s. 73 - 83

https://doi.org/10.4467/20843828AM.12.005.0457

Autorzy

Dawid Tarłowski
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Wszystkie publikacje autora →

Tytuły

Sufficient conditions for the convergence of nonautonomous stochastic search for a global minimum

Abstrakt

The majority of stochastic optimization algorithms can be written in the general form xt+1 = Tt(xt; yt), where xt is a sequence of points and parameters which are transformed by the algorithm, Tt are the methods of the algorithm and yt represent the randomness of the algorithm. We extend the results of papers [11] and [14] to provide some new general conditions under which the algorithm finds a global minimum with probability one.

Bibliografia

1. Appel M. J., Labarre R., Radulovic D., On Accelerated Random Search, SIAM J. Optim., 14 (2003), 708-731.

2. Beyer H. G., Schwefel H. P., Evolution Strategies - A Comprehensive Introduction, Natural Computing, 1 (2002), 3-52.

3. Billingsley P., Convergence of Probability Measures, Second Edition, A Wiley-Interscience Publication, 1999.

4. Clerc M., Kennedy J., The Particle Swarm - Explosion, Stability, and Convergence in a Multidimensional Complex Space, IEEE Transactions on Evolutionary Computation, 6 (2002).

5. Clerc M., Particle Swarm Optimization, ISTE Ltd, London, 2006.

6. Dudley R. M., Real Analysis and Probability, Cambridge University Press, 2004.

7. Lasota A., Mackey M., Chaos, Fractals and Noise, Springer Verlag, 1994.

8. Meyn S., Twedie R., Markov Chains and Stochastic Stability, Springer Verlag, London, 1993.

9. Ombach J., Stability of evolutionary algorithms, J. Math. Anal. Appl., 342 (2008), 326-333.

10. Ombach J., A Proof of Convergence of General Stochastic Search for Global Minimum, Journal of Di erence Equations and Applications, 13 (2007), 795-802.

11. Ombach J., Tar lowski D., Nonautonomous Stochastic Search in Global Optimization, Preprint.

12. Radwanski M., Convergence of nonautonomous evolutionary algorithm, Univ. Iagel. Acta Math., 45 (2007), 197-206.

13. Rudolph G., Convergence of Evolutionary Algorithms in General Search Spaces, 50-54, Proceedings of the Third IEEE Conference on Evolutionary Computation, Piscataway, IEEE Press, NJ, 1996.

14. Tarlowski D., Non-autonomous Stochastic Search for Global Minimum in Continuous Optimization, Preprint.

15. Tarlowski D., Global Convergence of Stochastic Optimization Algorithms, Preprint.

16. Zhigljavsky A., Zilinskas A., Stochastic Global Optimization, Springer, New York, 2008.

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2011, Tom 49, s. 73 - 83

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

Sufficient conditions for the convergence of nonautonomous stochastic search for a global minimum

Polski:

Sufficient conditions for the convergence of nonautonomous stochastic search for a global minimum

Autorzy

Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska

Publikacja: 05.06.2012

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Dawid Tarłowski (Autor) - 100%

Korekty artykułu:

-

Języki publikacji:

Angielski