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SUFFICIENT CONDITIONS FOR THE CONVERGENCE
OF NON-AUTONOMOUS STOCHASTIC SEARCH
FOR A GLOBAL MINIMUM

BY DAWID TARLOWSKI

Abstract. The majority of stochastic optimization algorithms can be writ-
ten in the general form x¢11 = T (z¢, y+), where z; is a sequence of points
and parameters which are transformed by the algorithm, T} are the meth-
ods of the algorithm and y; represent the randomness of the algorithm. We
extend the results of papers [11] and [14] to provide some new general con-
ditions under which the algorithm finds a global minimum with probability
one.

1. Introduction. Recent decades have been witnessing a great develop-
ment of stochastic optimization techniques. Many methods are purely heuris-
tic and their performance is experimentally confirmed. At the same time the
corresponding mathematical background is underdeveloped. The global mini-
mization problem concerns finding a solution of

min f(2),
where f: A — R is the problem function given on a metric space (A4,d) of
all possible solutions. The most common mathematical tools of the stochastic
convergence analysis are the probability theory and the Markov chains theory,
see [6l, 3, [8] for the general theory or [I, 5], 13] for some applications. This
paper is a continuation of papers [11] and [14], where some concepts of the
Lyapunov stability theory and the weak convergence of measures have been
used. As it was discussed there, the majority of algorithms can be written
in the general form x;11 = Ty(xy,y:), where x; is a sequence of points and
parameters which are successively transformed by the algorithm, y; represents
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the randomness of the algorithm and 7T; are the methods of the algorithm.
The algorithm was viewed as a non-autonomous dynamical system on Borel
probability measures on the space A of admissible solutions; the proper Lya-
punov function has been applied to it and some sufficient conditions for the
global convergence have been established. As before, in theoretical analy-
sis we assume that x; belongs to A. This assumption does not prevent the
applications of the theoretical results, even in the case of self-adaptive evo-
lution strategies, like (1 + A) and (p, A) algorithms, see [2] or Section 7 in
[14]. In fact, if 2y = (p},---,pF,cl,---,c) € AF x C!, where C is a space
of parameters, then we can consider the space A = A% x C! and the function

- k \
fpl, - pk et d) = 21 f(»"). Roughly speaking, the basic convergence
1=

assumption, used in [11}, [14], and in the previous papers [9, 10}, 12], was

(1.1) / F(T (@ y)dy < £(),

where T represents some methods of the algorithm and dy is an integration
according to some probability distribution. The assumption means that the
algorithm is capable of reaching from any position, in one step, the areas
with lower function values. However, some algorithms, like Particle Swarm
Optimization (PSO), [4} (5], gradually move through the search space and do
not necessarily satisfy the condition, but remembering the best point found,
they are capable of finding the global solution. In this paper we show that
can by replaced with a softer condition, which may be useful in further
convergence analysis of some swarm intelligence algorithms, like PSO.

This paper is organized as follows. In Section 2 we define the algorithm and
present the main results of the paper, Theorem [I| and Theorem [2| In Section
we recall one of the results of [14], where a Lyapunov function is applied to
some non-autonomous dynamical system. Next, we use this result to provide
a proof of Theorem [ stated in Section [dl In Section [5] we show that Theorem
[ leads to Theorem [I] whilst Theorem [2]is a consequence of Theorem [I]

2. The algorithm and the global convergence. Let (A4,d) and (B, dp)
be separable metric spaces and let f: A — R be a continuous function which
attains its global minimum fy;,. Without loss of generality we assume that
fmin = 0. Let

A*={zxe A: f(x)=0}
be a set of global minimums. Let (2,3, P) be a probability space. We will
provide some sufficient conditions for the convergence of a vast class of stochas-
tic optimization methods, which can be modeled as the sequence of random
variables X;: Q =+ A, t=0,1,2,---, defined by the non-autonomous equation

(2.1) Xip1 = Ti( X, V),
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where

e Y;: Q) — B are measurable
o T;: A x B— A are measurable
e the sequence X, Yp, Y1, - is independent.

X is a sequence, successively transformed by the algorithm, which approx-
imates a global solution, Y; represent the randomness of the algorithm and 73
represent the methods, by which the algorithm transforms the points and the
parameters.

Let (T, d7) denote a metric space of all measurable operators T: Ax B —
A with a uniform convergence metric and let (N, 7pr) denote the space of all
Borel probability measures on B equipped with a weak convergence topology.
Let X;: Q — A be a sequence defined by equation and let 4 denotes the
distribution of Y;, t = 0,1,--- . It is clear that the sequence {(1},14)};°, and
the initial distribution pg of Xy determine the distributions of X;.

For any | € N define the sequence

TED . Ax Bt — A, t=1,2,--
as TD = T; and

(2.2) T (@ gy, yie) = Trasn (T(t’l)(% Ui, 7yl+t71)7yl+t> :
We will write 7% := Tt0) ¢ =1,2,.... Clearly
X1 =T (X0, Y0, -+, V)
and, for any [ € N,
Kiger = T (X0, Y, Yigy -+, Yige).

In Theorem (1] and Theorem [2| we present the conditions under which the
algorithm, defined by (2.1]), converges to the set of global solutions with prob-
ability 1.

THEOREM 1. Assume that A is compact. Let U C T x N and let Uy C U
be such that Uy is compact and

(A) for any (T,v) € Uy and x € A, T is continuous in (x,y) for any y from
some set of full measure v,
(B) forany (T,v) €U and z € A

(2.3) / F(T(y)oldy) < f(z),
B
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(C) there is s > 0 such that for any {(T;,v;): @ = 0,---,s} C Uy and

ze A\ A
(24) / f (Ts+1(xvy07"' ays)) Vg X --- X 1) (dysa 7dy0> < f(x)a
Bs+1

where Tt = TGH1L0) s defined by @.2). If uy = (Ty,v1) € U is such that for
any t € N there is tg >t such that for i < s we have u,+; € Uy, then

t—o00

Ve >0 P(d(X, A") <e) — 1

and
Ef(X:) 0, t > 0.

Ef(X:) denotes the expected value of the random variable f(X;): @ — R,
Le. E(f(Xy) = [ f(X¢)dP. If we express condition (B) in terms of the
Q

conditional probability, then we have

E(f(Xi)| X = z) < f(a),
where (T}, 14) € U. Similarly, condition (C) takes a form
E(f(Xtyst1)| X = z) < f(2),
where z € A\ A* and (Tiyi,vi+1) € Uy, i = 0,1,--- ,s. It gives the intuition
behind the condition.

Many algorithm are monotonous, i.e. they satisfy f(Xi11) < f(Xy). If we
strengthen condition (B) assuming the algorithm monotonous, then we will
obtain Theorem [2| For any § > 0 let

A(;:{a:EA:f(x)§5}andT5:T|A§ : As x B — A.
For any U C T x N let
U()=Ts x N, where Ts = {Ts5: T € T}.

It is simple that if A and Uy are compact, then As and (Up)s are compact
for any > 0. In the case A = R"™, by the continuity of f, for the compactness
of As, 6 > 0, it is enough to assume that the sets A5 are bounded.

THEOREM 2. Assume that As is compact, 6 > 0. Let U C T x N and
Up C U be such that Uy(d) is compact for any § > 0 and conditions (A) and
(C) are satisfied. Assume that

(B’) for any (T,v) e U andx € A, y € B
[(T(z,y)) < f(2).
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Let uy = (Ty,vp) € U. If for any t € N there is to > t such that for i < s we
have u,+; € Ug, then

P(d(X,, A*) =0, t — 00) =1

and

f(Xe) (0, t 00 a.s.

REMARK 1. The case s = 0 was analyzed in [11, 14]. If s = 0, condition
(A) of the theorems can be weakened, see Theorems 1 and 2 stated in [14].

3. Some concepts of the Lyapunov stability theory. Let I/ be a met-
ric space and let M be a compact metric space. Let 0: U > u — Ou € U and
II: U x M: (u,m) — II,m € M be given continuous maps. For ¢t > 0 define
I U x M > (u,m) — IIim € M as

(3.1) I°(u,m) = m and II™'m = Iy, o ITtm, where 0%u = u.

In other words, ITtm = (Ilpi-1, 0 Igi—2, 0 --- o II,) (m), t > 1.

For any u € U, the sequence IT! determines a non-autonomous dynamical
semi-system on M. For any m € M, its orbits are given by {II!m: t =
0,1,2,---}. At the same time I1,: M — M is a continuous function which
induces an autonomous dynamical system on M with orbits {(I,)'m: t =
0,1,---}, where (I1,)°m = m and (I1,)""'m = II,(I1,)'m. We will say that
a closed set K C M is invariant for IT,, where u € U, iff IT,(K) C K.

THEOREM 3. Let @ # M* C M be closed and invariant for any IT,,, v € U.
Let V: M — R be a Lyapunov function for any Il,, uw € U, i.e:

1. V is continuous,

2. V(m) =0 form e M*,

3. V(m) >0 forme M\ M*,

4. V(II,m) < V(m) for anyu € U and m € M.

Let Uy C U and Uy C U be such that U is compact and

(a) for any u € U there is k > 0 with 0%u € U,
(b) for any u € Uy and m € M\ M*, V(II,m) < V(m),
(c) there is a surjection ¢: Uy — U such that for uw € Uy and m € M

(3.2) Iym = Il ym.
Then, for any u € U and m € M,
V(ITEm) \, 0, ast— oo.

PROOF. The theorem is a direct consequence of Theorem 4 stated in [14].
O
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4. Some concepts of the theory of weak convergence of measures.
First recall some useful facts about the weak convergence of Borel probability
measures. For more details, see for example [6] or [3].

Let M(S) be a space of Borel probability measures on a separable metric
space (S,dg). We say that a sequence p; € M (S) converges to some pu € M(S)
if for any bounded and continuous function h: S — R we have

/hd,ut—>,u, as t — 00.
S

As S is separable, the topology of weak convergence is metrizable and one
of accessible metrics is the Prohorov metric, defined by

dn(v1,v2) = inf{e > 0: 11 (D) < vo(D?) + € for any Borel set D C S},

where D° = {y € S: ds(y, D) < }. Furthermore, if S is compact, then M(S)
is compact.

From now on,(M,dys) will denote the metric space of Borel probability
measures on A with the Prohorov metric dy;. Fix (T,v) € T x N. The
function Pip,y: M 3 pu— P ,p € M, defined by

P ym(C) = (% v)(T7Y(C)), for any Borel set C' C M,

is a Foias operator, see [7]. We will also write Py = (u x p)T 1.

PROPOSITION 1. If Uy C T x M satisfies assumption (A) of Theorem [1]
then the function P : Uy x M 3 (u,pu) — Py € M is continuous.

PRrROOF. For the proof see Proposition 1 established in [11]. O

Let
={pueM: supp uC A*}.

The following theorem is a basic tool for proving Theorem [I] stated in
Section 5.

THEOREM 4. Assume that U C T x N and Uy C U are such that Uy is
compact and conditions (A), (B) and (C) of Theorem [1] are satisfied. Let
(Tt,yt) € U, t € N. If for any t there is tg > t such that {(Tyy+i, Vig+i): @ =
0,1,---,s8} C Uy, then for any po € M, the sequence uy € M, defined by

P11 = P(1y ) bit, satisfies

dpr(pe, M*) = 0, ast — oo
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and

/fdut\‘O, as t — oo.
A

PrOOF. We will take advantage of Theorem (3| Let (N,dy) be a discrete
metric space and let

U=N x {u=(ug,us, ) € UN: Vt (T}, 1) € Uy = uy € Up}

be a metric space with the product metric dy;, which is defined by

dy((m, ), (n,v)) = dn(m,n) + > 27 dy (u;, v;).
=1

Let {t;}72, C N be a sequence defined by
to = min{t € N: (T4, v144) € Up: i =0,1,---,s}
and
ther =min{t >ty +s+1: (Tpyi,vi4) €Up: 1 =0,1,--- s}
Let
t(N) = {ty: k=0,1,---}.
Let a: N3 k — o) € N satisfy
ar+s+1 , if o € t(N)
min {k1 > o k1 € t(N)} , if ag ¢ t(N)
and let B: U — U be a shift map defined by

ap=0 and apy = {

B(anula"') = (ul,UQ,"-).

Clearly, for k € N, B¥(ug,u1,---) = (ug, upy1,--- ). We will also write (u) :=
B*(u). Let
0: NxU> (k,u) — (k+1,(u) ) e NxU.

Clearly a shift map is continuous, thus 6 is continuous. For any natural num-
bers | < t and u € UN define Pét’l): M — M as

PL(Lt’l) =P, ,oP, ,0---0PF,.
Let IT: N xU x M > (k,u, ) — I ypn € M be as follows

X(k+1)

TR T

By Proposition [I, IT is continuous. In fact, for any natural k& the function
I, () is a composition of continuous functions P,,;. Furthermore,

—a,0 ,
(e ples
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Thus, for u = {(Ty,14)}°, and t > 1, the IT* defined by (3.1]), satisfy
H%O,U)IU’O = P(Olt—at—l,ﬂ) 0.0 Plgal,o)lu

(Way_4
= éatvat—l) 0.0 ngaho)luo - plgat»ﬂ) = Y-
Define V. M — R as
V(w = [ sin
A

We will show that V satisfies all assumptions (1), (2), (3) and (4) of Theorem

Since f is continuous (and bounded as A is compact), then the continuity

of V follows directly from the definition of weak convergence. To see (2),(3)

note that for any u € M, supp p C A* iff u(A*) = 1. Since f is positive

without the set A* and equal to 0 on A*, then it is clear that for any p from

M,V(p)= [ fdu>0and V(u) =0« p(A\ A*) =0 pe M*. To see (4),
A

by the definition of I7, it will be enough to know that V(P,u) < V(u) for any
u=(T,v) €U and p € M.

By the definition of Foias operator, change of variable, Fubini’s theorem and
(B),

V(P = [ faPui= [ foTd(ux)

A AxB

- / / (T, y))(dy) | plde) < / F(@)u(da) = V(p).
A B A

From (2), (3), (4), there immediately follows that M* is invariant under
I, for any u € U. Fix kg € a1 (¢(N)), i.e. fix ko such that oy, € t(N). Define

Uy = (a—l (tH(N)) x (Ug)*** x UN) nu
and
U6 = {ko} X {u S (U())N: Ui = Ujpst+1, ¢ =0,1,--- }
Clearly U}, is compact as a closed subset of a compact set {ko} x (Up)N. Tt
remains to show that Uy, U satisfy assumptions (a),(b),(c) of Theorem 3| (a)

is an immediate consequence of the definitions of Uy, a and 6. To see (b), we
need V (I, ,yp) < V(p) for any (k,u) € Uy and pp € M\ M*. Since oy, € t(N),

then Il ., u = PQESH’O)N. Hence, we need
V (Py 0 0Pyg)u) <V(w)
for any (ug,---,us) € (Up)*™ and p € M\ M*. We have J fdPg =
A

i Qf(T(x, y))u(dy)> p(dx). Using the induction, by change of variable and
A
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Fubini theorem, we obtain

(@) [P oo P = [ Fa((ux Ty ) ) 17

A A

:/ / f (TSH(JU,Z/O»' o 7y8)) Vs X -+- X 1) (dysa ’dyo) /,L(dSU)
A Bs+l

Note that the condition (B) implies that for any (7;,v;);_, € (Up)*H1,
T+t = T(+1L0) | defined by (2.2), satisfies

(4.2)

Vaed [ fT aan ) v x <o (g do) < Flz) =0,
Bs+1

?ix)u_g M\ M*. By (1)), (£.2), (C) and p(A\ A*) > 0, for any (ug, - ,us) €

U)*™,

V((Puso"'opuo):u)

=/ /f(TS+1<:c,yo,--~,ys>)usx---xuo (dys, -, dyo) | u(de)
A Bs+1

== / /f (Ts+1(337y07 T 7ys)) Vg X -+- X 1) (dy87 U 7dy0) /,L(d.fC) + /Odﬂ
A\A* \ Bs+1 Ax

< [ f@hntdo) = [ fa)ntdn) =V (n)
AVA* A
Let
C: Uy > (kvu) — (ko’ (uz mod(s—l—l))?iO) € Z/l(l),
where i mod(s+1) =k € {0,1,--- ,s} with (i—k) = ¢-(s+1) for some natural
c. Clearly, ( is a surjection. For any oy € t(N) we have g1 —ap = s+ 1.
Hence, for any (k,u) € Uy and p € M,

_ a0
T T TR AT

which proves (c). We have shown that the defined objects V', U, 0, II, Uy,

U}y and ¢ satisfy all the assumptions of Theorem |3| Since po, = I} 1y, where

u = (Ty, )2y € U, then V(ua,) \( 0. As we have shown, V(uey1) < V().

Hence, V(i) = [ fdus N 0. Now, note that the continuity of V' and the
A

compactness of M imply that V is separated from zero without any open set
D with D D M*. Thus, since V(u) N\, 0, then d(u:, M*) — 0. O
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5. Proofs of Theorem [1]and Theorem [2| First, recall a simple lemma.

LEMMA 1. Let X;: Q — A be a sequence of random variables distributed
according to py € M. If dps(pg, M*) — 0, then

Ve >0 P(d(Xy, A*) <e) =1, t— oc.
PROOF. For the proof see Section 5.1 in [14]. O

The results of Section M lead to Theorem [1l

ProoFr oF THEOREM [I. We will make use of Theorem Let u; denote
the distribution of X3, ¢t = 0,1,---. Note that, by the definition of X;, the
random variables X; and Y; are independent. Thus, X;;1 = T;(X},Y;) is dis-
tributed according to (s x )Ty = Piry vyt By Theorem dar(pe, M*) — 0
and [ fdps \ 0. From Lemma

A

Ve >0 P(d(X, A%) <e) =0, t— oo.

Now, it is enough to note that by change of variables,

B0 = [ 1(x0ap = [ i
Q A O

PRrROOF OF THEOREM 2l Fix xo € A. If pp = 04, is a Dirac measure, then
supp po = {To} C Apay)- Af@e) = {z € A f(z) < J} is compact and, by
(B’), Ti(Afp(pg) X B) C Af(a) for any t € N. Clearly A* C Ag(,,y. Thus we
may apply Theorem [I| to Af(,,). Hence, under the assumption po = 0z, we
have Ef(X;) N\, 0.

Now, let ug € M. By Fubini’s theorem,

BF(X0) = Ef(T" (X0 Yo, V) = [ BAT (w0, Yor - Y)poldao).
A

Since Ef(T*(zg,Y0,---,Y;) \( 0, for any zg € A, then, by the Lebesgue
Monotone Convergence Theorem, Ef(X;) N\, 0. Since, from (B’), f(X;) <
f(Xit1), then f(X¢) “\( 0 almost everywhere (on some set of full measure P).
In fact, in the opposite case, again by the Monotone Convergence Theorem,
we would have Ef(X;) N\ 0 for some § > 0. Now, it is enough to know that
f(z) N implies that d(x¢, A*) — 0 for any sequence z; € A. It holds true,
because there is § > 0 such that As is compact. Hence, as a continuous
function, f is separated from zero without any open set D C A with D D A*.
Therefore, P (d(X¢, A*) = 0) = 1. O
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