Study of solutions of logarithmic order to higher order linear differential-difference equations with coeffcients having the same logarithmic order
Wybierz format
RIS BIB ENDNOTEStudy of solutions of logarithmic order to higher order linear differential-difference equations with coeffcients having the same logarithmic order
Data publikacji: 09.01.2018
Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 15-32
https://doi.org/10.4467/20843828AM.17.002.7078Autorzy
Study of solutions of logarithmic order to higher order linear differential-difference equations with coeffcients having the same logarithmic order
The main purpose of this paper is to study the growth of solutions of the linear differential-difference equation L(z, f)= n ∑ i=0 m ∑ j=0 Aij (z) f(j)(z + ci)=0, where Aij (z) (i = 0, ททท, n; j = 0, ททท, m) are entire or meromorphic functions of finite logarithmic order and ci (0, ททท, n) are distinct complex numbers. We extend some precedent results due to Wu and Zheng and others.
1. Belaıdi B., Growth of meromorphic solutions of finite logarithmic order of linear difference equations, Fasc. Math., 54 (2015), 5–20.
2. Belaıdi B., Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations, submitted.
3. Cao T. B., Liu K., Wang J., On the growth of solutions of complex differential equations with entire coefficients of finite logarithmic order, Math. Reports, 15(65), 3 (2013), 249–269.
4. Chen Z. X., Shon K. H., On growth of meromorphic solutions for linear difference equations, Abstr. Appl. Anal., 2013, Art. ID 619296, 1–6.
5. Chern P. T. Y., On meromorphic functions with finite logarithmic order, Trans. Amer. Math. Soc., 358 (2006), no. 2, 473–489.
6. Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f (z + η) and difference equations in the complex plane, Ramanujan J., 16 (2008), no. 1, 105–129.
7. Goldberg A., Ostrovskii I., Value Distribution of Meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence RI, 2008.
8. Gundersen G. G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37 (1988), no. 1, 88–104.
9. Gundersen G. G., Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), no. 1, 415–429.
10. Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), no. 2, 477–487.
11. Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), no. 2, 463–478.
12. Hayman W. K., Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
13. Heittokangas J., Wen Z. T., Functions of finite logarithmic order in the unit disc, Part I. J. Math. Anal. Appl., 415 (2014), no. 1, 435–461.
14. Heittokangas J., Wen Z. T., Functions of finite logarithmic order in the unit disc, Part II. Comput. Methods Funct. Theory, 15 (2015), no. 1, 37–58.
15. Laine I., Yang C. C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2), 76 (2007), no. 3, 556–566.
16. Tu J., Yi C. F., On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl., 340 (2008), no. 1, 487–497.
17. Wen Z. T., Finite logarithmic order solutions of linear q-difference equations, Bull. Korean Math. Soc., 51 (2014), no. 1, 83–98.
18. Wu S. Z., Zheng X. M., Growth of meromorphic solutions of complex linear differential-difference equations with coefficients having the same order, J. Math. Res. Appl., 34 (2014), no. 6, 683–695.
19. Yang C. C., Yi H. X., Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
20. Zheng X. M., Tu J., Growth of meromorphic solutions of linear difference equations, J. Math. Anal. Appl., 384 (2011), no. 2, 349–356.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 15-32
Typ artykułu: Oryginalny artykuł naukowy
Publikacja: 09.01.2018
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1993
Liczba pobrań: 1373