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STUDY OF SOLUTIONS OF LOGARITHMIC ORDER TO

HIGHER ORDER LINEAR DIFFERENTIAL-DIFFERENCE

EQUATIONS WITH COEFFICIENTS HAVING THE SAME

LOGARITHMIC ORDER

by Benharrat Beläıdi

Abstract. The main purpose of this paper is to study the growth of solu-
tions of the linear differential-difference equation

L(z, f) =

n∑
i=0

m∑
j=0

Aij(z) f
(j)(z + ci) = 0,

where Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) are entire or meromorphic func-
tions of finite logarithmic order and ci (0, · · · , n) are distinct complex num-
bers. We extend some precedent results due to Wu and Zheng and others.

1. Introduction and main results. Throughout this paper, we assume
that readers are familiar with the standard notations and the fundamental
results of the Nevanlinna value distribution theory of meromorphic functions
([12,19]). Let f be a meromorphic function; we define

m(r, f) =
1

2π

∫ 2π

0
log+

∣∣f(reiϕ)∣∣ dϕ,
N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

and

T (r, f) = m(r, f) +N(r, f) (r > 0)

2010 Mathematics Subject Classification. 30D35, 34K06, 34K12.
Key words and phrases. Linear differential-difference equation, meromorphic function,

logarithmic order, logarithmic type, logarithmic lower order, logarithmic lower type.



16

is the Nevanlinna characteristic function of f , where log+ x = max(0, log x) for
x ≥ 0, and n(t,∞, f) = n(t, f) is the number of poles of f(z) lying in |z| ≤ t,
counted according to their multiplicity. Also, for a 6=∞, we define

m

(
r,

1

f − a

)
= m(r, a, f) =

1

2π

∫ 2π

0
log+

1

|f(reiϕ)− a|
dϕ,

N

(
r,

1

f − a

)
= N(r, a, f) =

∫ r

0

n(t, a, f)− n(0, a, f)

t
dt+ n(0, a, f) log r,

where n(t, a, f) is the number of zeros of the equation f(z) = a lying in |z| ≤ t,
counted according to their multiplicity. Also, we use the notations µ(f) , ρ(f)
to denote the lower order and the order of a meromorphic function f .

To express the rate of growth of meromorphic solutions of infinite order,
we recall the following definition.

Definition 1.1 ([16, 19]). Let f be a meromorphic function. Then the
hyper-order ρ2(f) of f(z) is defined by

ρ2(f) = lim sup
r→+∞

log log T (r, f)

log r
.

If f is an entire function, then the hyper-order of f(z) is defined as

ρ2(f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM(r, f)

log r
,

where M(r, f) is the maximum modulus of f in the circle |z| = r.

Definition 1.2 ([12]). Let f be an entire function of order ρ (0 < ρ <
+∞). The type of f is defined as

τ(f) = lim sup
r→+∞

logM(r, f)

rρ
.

Similarly, the lower type of an entire function f of lower order µ (0 < µ <∞)
is defined by

τ(f) = lim inf
r→+∞

logM(r, f)

rµ
.

Definition 1.3 ([12,19]). For a ∈ C = C ∪ {∞}, the deficiency of a with
respect to a meromorphic function f is defined as

δ(a, f) = lim inf
r→+∞

m
(
r, 1
f−a

)
T (r, f)

= 1− lim sup
r→+∞

N
(
r, 1
f−a

)
T (r, f)

, a 6=∞,

δ(∞, f) = lim inf
r→+∞

m(r, f)

T (r, f)
= 1− lim sup

r→+∞

N(r, f)

T (r, f)
.
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Recently, the difference counterparts of Nevanlinna theory have been es-
tablished. The key result is the difference analogue of the lemma on the loga-
rithmic derivative obtained by Halburd–Korhonen [10] and Chiang–Feng [6],
independently. Subsequently Halburd and Korhonen [11] showed how all key
results of the Nevanlinna theory have corresponding difference variants as well.
After that, it was with a growing interest that solutions to difference equations
in the complex domain have been investigated by making use of this variant of
the value distribution theory, see [4, 15, 17, 18, 20]. In [15], Laine and Yang
considered complex linear difference equations and obtained the following the-
orem.

Theorem A ([15]). Let A0(z) , A1(z) , · · · , An(z) be entire functions of fi-
nite order such that among those having the maximal order ρ = max

0≤j≤n
{ρ(Aj)} ,

there is exactly one whose type is strictly greater than the others’. Then for
any meromorphic solution of

An(z) f(z + n) +An−1(z) f(z + n− 1) + · · ·+A1(z) f(z + 1) +A0(z) f(z) = 0,

we have ρ(f) ≥ ρ+ 1.

In [16], Tu and Yi investigated the growth of solutions of a class of higher
order linear differential equations with entire coefficients when most of them
are of the same order, and obtained the following result.

Theorem B ([16]). Let A0(z) , · · · , Ak−1(z) be entire functions such that
ρ(A0) = ρ (0 < ρ < +∞) and τ(A0) = τ (0 < τ < +∞) , and let ρ(Aj) ≤
ρ(A0) = ρ (j = 1, 2, · · · , k − 1) , τ(Aj) < τ(A0) = τ (j = 1, 2, · · · , k − 1) if
ρ(Aj) = ρ(A0) (j = 1, 2, · · · , k − 1) . Then every solution f 6≡ 0 of

f (k) +Ak−1(z) f
(k−1) + · · ·+A1(z) f

′ +A0(z) f = 0,

satisfies ρ(f) = +∞ and ρ2(f) = ρ(A0) = ρ.

From Theorems A and B, we deduce that when there is exactly one dom-
inant coefficient among those coefficients having the same maximal order, we
may obtain the growth relation between the solutions and the coefficients of the
above complex linear difference equation or complex linear differential equa-
tion. In recent paper [18], Wu and Zheng investigated the growth of meromor-
phic solutions of the linear differential-difference equation

(1.1) L(z, f) =

n∑
i=0

m∑
j=0

Aij(z) f
(j)(z + ci) = 0,

where Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) are entire or meromorphic functions
of finite order and ci(0, · · · , n) are distinct complex numbers, where there is
only one dominant coefficient. Hence, from Theorems A and B a natural
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question emerges: How to express the growth of solutions of (1.1) when all
coefficients A0(z) , A1(z) , · · · , An(z) are entire or meromorphic functions and
of order zero in C? The main purpose of this paper is to make use the concept
of finite logarithmic order due to Chern [5] to extend previous results of Wu
and Zheng [18] for meromorphic solutions to equation (1.1) of zero order in C.
We recall the following definitions.

Definition 1.4 ([5]). The logarithmic order of a meromorphic function f
is defined as

ρlog(f) = lim sup
r→+∞

log T (r, f)

log log r
.

If f is an entire function, then

ρlog(f) = lim sup
r→+∞

log logM(r, f)

log log r
.

Remark 1.1. Obviously, the logarithmic order of any non-constant ratio-
nal function f is one, and thus, any transcendental meromorphic function in
the plane has logarithmic order no less than one. However, a function of log-
arithmic order one is not necessarily a rational function. Constant functions
have zero logarithmic order, while there are no meromorphic functions of log-
arithmic order between zero and one. Moreover, any meromorphic function
with finite logarithmic order in the plane is of order zero.

Definition 1.5. The logarithmic lower order of a meromorphic function
f is defined as

µlog(f) = lim inf
r→+∞

log T (r, f)

log log r
.

If f is an entire function, then

µlog(f) = lim inf
r→+∞

log logM(r, f)

log log r
.

Definition 1.6 ([3]). The logarithmic type of an entire function f with
1 ≤ ρlog(f) < +∞ is defined by

τlog(f) = lim sup
r→+∞

logM(r, f)

(log r)ρlog(f)
.

Similarly the logarithmic lower type of an entire function f with 1 ≤ µlog(f) <
+∞ is defined by

τ log(f) = lim inf
r→+∞

logM(r, f)

(log r)µlog(f)
.
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Remark 1.2. It is evident that the logarithmic type of any non-constant
polynomial P equals its degree deg(P ); that any non-constant rational function
is of finite logarithmic type, and that any transcendental meromorphic function
whose logarithmic order equals one in the plane must be of infinite logarithmic
type.

Recently, the concept of logarithmic order has been used to investigate the
growth and the oscillation of solutions of linear differential equations in the
complex plane [3] and complex linear difference and q-difference equations in
the complex plane and in the unit disc ([1, 2, 13, 14, 17]). In what follows,
we consider the growth estimates of meromorphic solutions of the homoge-
neous equation (1.1) with some coefficients having the same maximal order or
maximal lower order, and we obtain the following results.

Theorem 1.1. Let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be entire functions
such that there exists an integer s (0 ≤ s ≤ n) satisfying

(1.2) max{ρlog(Aij) : (i, j) 6= (s, 0)} ≤ ρlog(As0) <∞,
and

(1.3) max{τlog(Aij) : ρlog(Aij) = ρlog(As0), (i, j) 6= (s, 0)} < τlog(As0).

Then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρlog(f) ≥
ρlog(As0) + 1.

Theorem 1.2. Let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be entire functions
such that there exists an integer s (0 ≤ s ≤ n) satisfying

(1.4) max{ρlog(Aij) : (i, j) 6= (s, 0)} ≤ µlog(As0) <∞,
and

(1.5) max{τlog(Aij) : ρlog(Aij) = µlog(As0), (i, j) 6= (s, 0)} < τ log(As0).

Then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies µlog(f) ≥
µlog(As0) + 1.

Theorem 1.3. Let H be a set of complex numbers satisfying log dens{|z| :
z ∈ H} > 0, and let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be entire functions
satisfying max{ρlog(Aij) : (i = 0, · · · , n; j = 0, · · · ,m)} ≤ ρ with 1 ≤ ρ <
+∞. If there exists an integer s (0 ≤ s ≤ n) such that for some constants
0 ≤ β < α and sufficiently small ε (0 < ε < ρ), we have

(1.6) |As0(z)| ≥ exp
{
α [log r]ρ−ε

}
and

(1.7) |Aij(z)| ≤ exp
{
β [log r]ρ−ε

}
, (i, j) 6= (s, 0)

as |z| = r → +∞ for z ∈ H, then every meromorphic solution f 6≡ 0 of
equation (1.1) satisfies ρlog(f) ≥ ρlog(As0) + 1.



20

Remark 1.3. By the assumptions of Theorem 1.3, we obtain ρlog(As0) = ρ.
Indeed, we have ρlog(As0) ≤ ρ. Suppose that ρlog(As0) = µ < ρ. Then, by

Definition 1.4 and (1.6), we have for any given ε
(
0 < ε < ρ−µ

2

)
exp

{
α [log r]ρ−ε

}
≤ |As0(z)| ≤ exp

{
[log r]µ+ε

}
.

as |z| = r → +∞ for z ∈ H. By ε
(
0 < ε < ρ−µ

2

)
this is a contradiction as

r → +∞. Hence ρlog(As0) = ρ.

Theorem 1.4. Let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be entire functions
of finite logarithmic order such that there exists an integer s (0 ≤ s ≤ n) sat-
isfying

(1.8) lim sup
r→+∞

∑
(i,j) 6=(s,0)

m(r,Aij)

m(r,As0)
< 1.

Then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρlog(f) ≥
ρlog(As0) + 1.

The following theorems give some properties of the logarithmic order of mero-
morphic solutions of (1.1) in the case when the coefficients are meromorphic
functions.

Theorem 1.5. Let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be meromorphic
functions such that there exists an integer s (0 ≤ s ≤ n) satisfying ρlog(As0) >
max{ρlog(Aij) : (i, j) 6= (s, 0)} and δ(∞, As0) > 0. Then every meromorphic
solution f 6≡ 0 of equation (1.1) satisfies ρlog(f) ≥ ρlog(As0) + 1.

Theorem 1.6. Let Aij(z) (i = 0, · · · , n; j = 0, · · · ,m) be meromorphic
functions of finite logarithmic order such that there exists an integer s

(0 ≤ s ≤ n) satisfying lim sup
r→+∞

∑
(i,j)6=(s,0)

m(r,Aij)

m(r,As0)
< 1 and δ(∞, As0) > 0.

Then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρlog (f) ≥
ρlog (As0) + 1.

2. Some lemmas. We recall the following definitions. The linear measure
of a set E ⊂ (0,+∞) is defined as m(E) =

∫ +∞
0 χE(t) dt and the logarithmic

measure of a set F ⊂ (1,+∞) is defined by lm(F ) =
∫ +∞
1

χF (t)
t dt, where

χH(t) is the characteristic function of a set H. The upper density of a set
E ⊂ (0,+∞) is defined by

densE = lim sup
r−→+∞

m(E ∩ [0, r])

r
.

The upper logarithmic density of a set F ⊂ (1,+∞) is defined by

log dens(F ) = lim sup
r−→+∞

lm(F ∩ [1, r])

log r
.
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It is easy to obtain the following remark.

Remark 2.1. For all H ⊂ [1,+∞) the following statements hold:

i) If lm(H) =∞, then m(H) =∞;
ii) If densH > 0, then m(H) =∞;
iii) If log densH > 0, then lm(H) =∞.

Lemma 2.1 ([8]). Let f(z) be a transcendental meromorphic function in the
plane, and let α > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞)
of finite logarithmic measure, and a constant B > 0 depending only on α and
(m,n) (m,n ∈ {0, 1, · · · , k}) m < n such that for all z with |z| = r 6∈ [0, 1]∪E1,
we have ∣∣∣∣∣ f (n)(z)f (m)(z)

∣∣∣∣∣ ≤ B
(
T (αr, f)

r
(logα r) log T (αr, f)

)n−m
.

From the above lemma, we obtain the following result.

Lemma 2.2. Let f(z) be a transcendental meromorphic function in the
plane with 1 ≤ ρlog(f) = ρ < +∞, and let ε > 0, α > 1 be given constants.
Then there exist a set E2 ⊂ (1,+∞) of finite logarithmic measure, and (m,n)
(m,n ∈ {0, 1, · · · , k}) m < n such that for all z with |z| = r 6∈ [0, 1] ∪ E2, we
have ∣∣∣∣∣ f (n)(z)f (m)(z)

∣∣∣∣∣ ≤
(

(log r)ρ+α+ε

r

)n−m
.

Proof. Since f(z) has finite logarithmic order ρlog(f) = ρ < +∞, so given
ε (0 < ε < 2) and sufficiently large r > R, we have

(2.1) T (r, f) < (log r)ρ+
ε
2 .

Combining (2.1) with Lemma 2.1, for α > 1, there exist a set E2 = [0, R]∪E1

of finite logarithmic measure and a constant B > 0, such that if |z| = r 6∈
[0, 1] ∪ E2, we obtain∣∣∣∣∣ f (n)(z)f (m)(z)

∣∣∣∣∣ ≤ B
(

(logαr)ρ+
ε
2

r
(logα r) log(logαr)ρ+

ε
2

)n−m

≤
(

(log r)ρ+α+ε

r

)n−m
.

(2.2)

Remark 2.2. It is shown in [7, p. 66], that for an arbitrary complex number
c 6= 0, the following inequalities

(1 + o(1))T (r − |c| , f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c| , f(z))
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hold as r → +∞ for an arbitrary meromorphic function f(z). Therefore, it is
easy to obtain

ρlog(f + c) = ρlog(f), µlog(f + c) = µlog(f).

Lemma 2.3 ([1]). Let η1, η2 be two arbitrary complex numbers such that
η1 6= η2 and let f(z) be a finite logarithmic order meromorphic function. Let
ρ be the logarithmic order of f(z). Then for each ε > 0, we have

m

(
r,
f(z + η1)

f(z + η2)

)
= O

(
(log r)ρ−1+ε

)
.

Lemma 2.4 ([6]). Let f be a meromorphic function, η a non-zero complex
number, and let γ > 1, and ε > 0 be given real constants. Then there exist a
subset E3 ⊂ (1,+∞) of finite logarithmic measure, and a constant A depending
only on γ and η, such that for all |z| = r /∈ E3 ∪ [0, 1], we have∣∣∣∣log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+
n(γr)

r
logγ r log+ n(γr)

)
,

where n(t) = n(t,∞, f) + n(t,∞, 1/f).

Lemma 2.5 ([8]). Let f be a transcendental meromorphic function, let j
be a non-negative integer, let a be a value in the extended complex plane, and
let α > 1 be a real constant. Then there exists a constant R > 0 such that for
all r > R, we have

(2.3) n
(
r, a, f (j)

)
≤ 2j + 6

logα
T (αr, f) .

Lemma 2.6. Let f be a meromorphic function with 1 ≤ µlog(f) < +∞.
Then there exists a set E4 ⊂ (1,+∞) of infinite logarithmic measure such that
for r ∈ E4 ⊂ (1,+∞) , we have

T (r, f) < (log r)µlog(f)+ε .

Proof. By definition of the logarithmic lower order, there exists a se-
quence {rn}∞n=1 tending to ∞, satisfying

(
1 + 1

n

)
rn < rn+1 and

lim
rn→∞

log T (rn, f)

log log rn
= µlog(f) .

Then for any given ε > 0, there exists an integer n1 such that for all n ≥ n1,

T (rn, f) < (log rn)µlog(f)+
ε
2 .

Set E4 =
∞⋃

n=n1

[
n
n+1rn, rn

]
. Then for r ∈ E4 ⊂ (1,+∞) , we obtain

T (r, f) ≤ T (rn, f) < (log rn)µlog(f)+
ε
2 ≤

(
log

n+ 1

n
r

)
µlog(f)+

ε
2< (log r)µlog(f)+ε,
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and lm(E4) =
∞∑

n=n1

rn∫
n

n+1
rn

dt
t =

∞∑
n=n1

log
(
1 + 1

n

)
=∞. Thus, Lemma 2.6 is proved.

Lemma 2.7. Let f be a meromorphic function, η a non-zero complex num-
ber, and ε > 0, β > 1 be given real constants. Then there exists a subset
E5 ⊂ (1,+∞) of finite logarithmic measure, such that if f has finite logarith-
mic order ρ, then for all |z| = r /∈ E5 ∪ [0, 1] , we have

(2.4) exp

{
−(log r)ρ+β+ε

r

}
≤
∣∣∣∣f(z + η)

f(z)

∣∣∣∣ ≤ exp

{
(log r)ρ+β+ε

r

}
.

Proof. By Lemma 2.4, there exist a subset E5 ⊂ (1,+∞) of finite loga-
rithmic measure, and a constant A depending only on γ and η, such that for
all |z| = r /∈ E5 ∪ [0, 1], we have

(2.5)

∣∣∣∣log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+
n(γr)

r
logγ r log+ n(γr)

)
,

where n(t) = n(t,∞, f) + n(t,∞, 1/f). By using (2.3) and (2.5), we obtain∣∣∣∣log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r

+
12

logα

T (αγr, f)

r
logγ r log+

(
12

logα
T (αγr, f)

))
≤ B

(
T (βr, f)

logβ r

r
log T (βr, f)

)
,(2.6)

where B > 0 is some constant and β = αγ > 1. Since f(z) has finite logarithmic
order ρlog(f) = ρ < +∞, so given ε, 0 < ε < 2, for sufficiently large r, we have

(2.7) T (r, f) < (log r)ρ+
ε
2 .

Then by using (2.6) and (2.7), we obtain∣∣∣∣log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ B
(
T (βr, f)

logβ r

r
log T (βr, f)

)

≤ B(log βr)ρ+
ε
2

logβ r

r
log(log βr)ρ+

ε
2 ≤ (log r)ρ+β+ε

r
.

(2.8)

From (2.8), we easily obtain (2.4).

Lemma 2.8. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2
and let f(z) be a meromorphic function of finite logarithmic order ρ. Let
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ε > 0 and β > 1 be given. Then there exists a subset E6 ⊂ (1,+∞) of finite
logarithmic measure such that for all |z| = r /∈ E6, we have

(2.9) exp

{
−(log r)ρ+β+ε

r

}
≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp

{
(log r)ρ+β+ε

r

}
.

Proof. We can write∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ =

∣∣∣∣f(z + η2 + η1 − η2)
f(z + η2)

∣∣∣∣ (η1 6= η2) .

Then by using Lemma 2.7, for any given ε > 0, β > 1 and all |z + η2| = R /∈
E5 ∪ [0, 1] , such that lm(E5) <∞, we obtain

exp

{
−(log r)ρ+β+ε

r

}
≤ exp

{
−(log(|z|+ |η2|))ρ+β+

ε
2

|z + η2|

}

= exp

{
−(logR)ρ+β+

ε
2

R

}
≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣
=

∣∣∣∣f(z + η2 + η1 − η2)
f(z + η2)

∣∣∣∣ ≤ exp

{
(logR)ρ+β+

ε
2

R

}

≤ exp

{
(log(|z|+ |η2|))ρ+β+

ε
2

|z + η2|

}
≤ exp

{
(log r)ρ+β+ε

r

}
,

where |z| = r /∈ E6 and E6 is a set of finite logarithmic measure.
By using Lemmas 2.4–2.6, we can generalize Lemma 2.2 and Lemma 2.8

into finite logarithmic lower order case as following.

Lemma 2.9. Let f(z) be a transcendental meromorphic function in the
plane with 1 ≤ µlog(f) = µ < +∞, and let ε > 0, α > 1 be given constants.
Then there exist a set E7 ⊂ (1,+∞) of infinite logarithmic measure, and (m,n)
(m,n ∈ {0, 1, · · · , k}) m < n such that for all z with |z| = r ∈ E7, we have∣∣∣∣∣ f (n)(z)f (m)(z)

∣∣∣∣∣ ≤
(

(log r)µ+α+ε

r

)n−m
.

Lemma 2.10. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2
and let f(z) be a meromorphic function of finite logarithmic lower order µ. Let
ε > 0 and β > 1 be given. Then there exists a subset E8 ⊂ (1,+∞) of infinite
logarithmic measure such that for all |z| = r ∈ E8, we have

exp

{
−(log r)µ+β+ε

r

}
≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp

{
(log r)µ+β+ε

r

}
.
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Lemma 2.11 ([1]). Let f be a meromorphic function with ρlog(f) ≥ 1. Then
there exists a set E9 ⊂ (1,+∞) of infinite logarithmic measure such that

lim
r→+∞
r∈E9

log T (r, f)

log log r
= ρ.

Lemma 2.12 ([1]). Let f1, f2 be meromorphic functions satisfying ρlog(f1)>
ρlog(f2) . Then there exists a set E10 ⊂ (1,+∞) of infinite logarithmic measure
such that for all r ∈ E10, we have

lim
r→+∞

T (r, f2)

T (r, f1)
= 0.

Lemma 2.13. Let f be an entire function with 1 ≤ µlog(f) < +∞. Then
there exists a set E11 ⊂ (1,+∞) of infinite logarithmic measure such that

τ log(f) = lim
r→+∞
r∈E11

logM(r, f)

(log r)µlog(f)
.

Proof. By the definition of the logarithmic lower type, there exists a
sequence {rn}∞n=1 tending to ∞, satisfying

(
1 + 1

n

)
rn < rn+1, and

τ log(f) = lim
rn→∞

logM(rn, f)

(log rn)µlog(f)
.

Then for any given ε > 0, there exists an n1 such that for n ≥ n1 and any

r ∈
[

n
n+1rn, rn

]
, we have

logM( n
n+1rn, f)

(log rn)µlog(f)
≤ logM(r, f)

(log r)µlog(f)
≤ logM(rn, f)

(log n
n+1rn)µlog(f)

.

It follows that(
log n

n+1rn

log rn

)µlog(f) logM( n
n+1rn, f)

(log n
n+1rn)µlog(f)

≤ logM(r, f)

(log r)µlog(f)

≤ logM(rn, f)

(log rn)µlog(f)

(
log rn

log n
n+1rn

)µlog(f)
.

Set

E11 =

∞⋃
n=n1

[
n

n+ 1
rn, rn

]
.

Then we have

lim
r→+∞
r∈E11

logM(r, f)

(log r)µlog(f)
= lim

rn→+∞

logM(rn, f)

(log rn)µlog(f)
= τ log(f)
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and lm(E11) =
∫
E11

dr
r =

+∞∑
n=n1

rn∫
n

n+1
rn

dt
t =

+∞∑
n=n1

log
(
1 + 1

n

)
= +∞.

Lemma 2.14 ([9]). Let ϕ : [0,+∞)→ R and ψ : [0,+∞)→ R be monotone
non-decreasing functions such that ϕ(r) ≤ ψ(r) for all r /∈ E12 ∪ [0, 1], where
E12 ⊂ (1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given
constant. Then there exists an r0 = r0(γ) > 0 such that ϕ(r) ≤ ψ(γr) for all
r > r0.

3. Proofs of the Theorems.

Proof of Theorem 1.1. Let f 6≡ 0 be a meromorphic solution of (1.1).
We suppose ρlog(f) < ρlog(As0) + 1 < +∞. We divide through equation (1.1)
by f(z + cs) to get

|As0(z)| ≤
n∑
i=0
i 6=s

m∑
j=0

|Aij(z)|

∣∣∣∣∣f (j)(z + ci)

f(z + ci)

∣∣∣∣∣
∣∣∣∣ f(z + ci)

f(z + cs)

∣∣∣∣
+

m∑
j=1

|Asj(z)|

∣∣∣∣∣f (j)(z + cs)

f(z + cs)

∣∣∣∣∣ .
(3.1)

In relation to (1.2) and (1.3), we set

ρ = max{ρlog(Aij) : (i, j) 6= (s, 0)},

and

τ = max{τlog(Aij) : ρlog(Aij) = ρlog(As0) : (i, j) 6= (s, 0)}.
Then for a sufficiently large r, we have

(3.2) |Aij(z)| ≤ exp
{

(log r)ρ+ε
}

, (i, j) 6= (s, 0)

if ρlog(Aij) < ρlog(As0), and

(3.3) |Aij(z)| ≤ exp
{

(τ + ε) (log r)ρlog(As0)
}

, (i, j) 6= (s, 0)

if ρlog(Aij) = ρlog(As0). By Lemma 2.2 and Remark 2.2, for any given ε > 0
and α > 1, there exists a set E2 ⊂ (1,+∞) of finite logarithmic measure such
that for all |z| = r /∈ [0, 1] ∪ E2, we have∣∣∣∣∣f (j)(z + ci)

f(z + ci)

∣∣∣∣∣ ≤
(

(log r)ρlog(f(z+ci))+α+ε

r

)j

=

(
(log r)ρlog(f)+α+ε

r

)j
(i = 0, 1, · · · , n, j = 1, · · · ,m) .

(3.4)
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By Lemma 2.8, there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure
such that for all |z| = r /∈ E6, we have for any given ε > 0 and β > 1

(3.5)

∣∣∣∣ f(z + ci)

f(z + cs)

∣∣∣∣ ≤ exp

{
(log r)ρlog(f)+β+ε

r

}
(i = 0, 1, · · · , n, i 6= s) .

Then we can choose an ε > 0 sufficiently small to satisfy

(3.6) τ + 2ε < τlog(As0), max {ρ, ρlog(f)− 1}+ 2ε < ρlog(As0) .

Substituting (3.2), (3.3), (3.4) and (3.5) into (3.1), for |z| = r /∈ [0, 1]∪E2∪E6,
we get

M(r,As0) ≤ exp

{
(log r)ρlog(f)+β+ε

r

}
O
(

exp
{

(τ + ε) (log r)ρlog(As0)
}

+ exp
{

(log r)ρ+ε
})((log r)ρlog(f)+α+ε

r

)m
,

(3.7)

where |As0(z)| = M(r,As0). By (3.6) and (3.7) and Lemma 2.14, we get

τlog(As0) = lim sup
r→+∞

logM(r,As0)

(log r)ρlog(As0)
≤ τ + ε < τlog(As0)− ε

which is a contradiction. Hence ρlog(f) ≥ ρlog(As0) + 1.

Proof of the Theorem 1.2. Here, we use a method similar to the one
in the proof of Theorem 1.1. Let f 6≡ 0 be a meromorphic solution of (1.1).
We suppose µlog(f) < µlog(As0) + 1 < +∞. In relation to (1.4) and (1.5), we
set

ρ1 = max{ρlog(As0) : (i, j) 6= (s, 0)},
and

τ1 = max{τlog(Aij) : ρlog(As0) = µlog(As0) : (i, j) 6= (s, 0)}.
Then for a sufficiently large r, we have

(3.8) |Aij(z)| ≤ exp
{

(log r)ρ1+ε
}
, (i, j) 6= (s, 0)

if ρlog(Aij) < µlog(As0) , and

(3.9) |Aij(z)| ≤ exp
{

(τ1 + ε) (log r)µlog(As0)
}
, (i, j) 6= (s, 0)

if ρlog(Aij) = µlog(As0) . By Remark 2.2, Lemma 2.9 and Lemma 2.10, for
any given ε > 0, α > 1, β > 1, there exists a set E8 ⊂ (1,+∞) of infinite
logarithmic measure such that for all |z| = r ∈ E8, we have

(3.10)

∣∣∣∣∣f (j)(z + ci)

f(z + ci)

∣∣∣∣∣ ≤
(

(log r)µlog(f)+α+ε

r

)j
(i = 0, 1, · · · , n, j = 1, · · · ,m)
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and

(3.11)

∣∣∣∣ f(z + ci)

f(z + cs)

∣∣∣∣ ≤ exp

{
(log r)µlog(f)+β+ε

r

}
(i = 0, 1, · · · , n, i 6= s) .

Then we can choose an ε > 0 sufficiently small to satisfy

(3.12) τ1 + 2ε < τ log(As0), max {ρ1, µlog(f)− 1}+ 2ε < µlog(As0) .

Substituting (3.8)–(3.11) into (3.1), for |z| = r ∈ E8, we get

M(r,As0) ≤ exp

{
(log r)µlog(f)+β+ε

r

}
O
(

exp
{

(τ1 + ε) (log r)µlog(As0)
}

+ exp
{

(log r)ρ1+ε
})((log r)µlog(f)+α+ε

r

)m
,

(3.13)

where |As0(z)| = M(r,As0). By (3.12), (3.13) and Lemma 2.13, we get

τ log(As0) = lim inf
r→+∞
r∈E8

logM(r,As0)

(log r)µlog(As0)
≤ τ1 + ε < τ log(As0)− ε

which is a contradiction. Hence µlog(f) ≥ µlog(As0) + 1.

Proof of the Theorem 1.3. By Remark 1.3, we know that ρlog(As0) =
ρ. Let f 6≡ 0 be a meromorphic solution of (1.1). We suppose ρlog(f) <
ρlog(As0)+1 = ρ+1 < +∞. By the assumptions of Theorem 1.3, there is a set

H of complex numbers satisfying log dens{|z| : z ∈ H} > 0 such that for z ∈ H,
we have (1.6) and (1.7) as |z| = r → +∞. Set H1 = {r = |z| : z ∈ H}, since
log dens{|z| : z ∈ H} > 0. Then by Remark 2.1, for H1 there is

∫
H1

dr
r = ∞.

Clearly, (3.4) and (3.5) hold for all z satisfying |z| = r /∈ [0, 1]∪E2∪E6, where
E2 and E6 are defined similarly as in the proof of Theorem 1.1. Substituting
(1.6), (1.7), (3.4) and (3.5) into (3.1), for |z| = r ∈ H1\ [0, 1] ∪ E2 ∪ E6, and

any given ε
(

0 < ε <
ρ−ρlog(f)+1

2

)
, we get

exp
{
α [log r]ρ−ε

}
≤ n exp

{
β [log r]ρ−ε

}
· exp

{
(log r)ρlog(f)+β+ε

r

}(
(log r)ρlog(f)+α+ε

r

)m
.

It follows that
(3.14)

exp
{

(α− β) [log r]ρ−ε
}
≤ n exp

{
(log r)ρlog(f)+β+ε

r

}(
(log r)ρlog(f)+α+ε

r

)m
.
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By 0 < ε <
ρ−ρlog(f)+1

2 and (3.14), we obtain a contradiction. Hence we get
ρlog(f) ≥ ρ+ 1 = ρlog(As0) + 1.

Proof of the Theorem 1.4. Let f 6≡ 0 be a meromorphic solution of
(1.1). If ρlog(f) =∞, then the result is trivial. Now we suppose ρlog(f) < +∞.
We divide through equation (1.1) by f(z + cs) to get
(3.15)

−As0(z) =

n∑
i=0
i 6=s

m∑
j=0

Aij(z)
f (j) (z + ci)

f(z + ci)

f(z + ci)

f(z + cs)
+

m∑
j=1

Asj(z)
f (j)(z + cs)

f(z + cs)
.

It follows

m(r,As0) ≤
n∑
i=0
i 6=s

m∑
j=0

m(r,Aij) +

m∑
j=1

m(r,Asj)

+
n∑
i=0

m∑
j=1

m

(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0
i 6=s

m

(
r,
f(z + ci)

f(z + cs)

)
+O(1) .

(3.16)

Suppose that

(3.17)

∑
(i,j)6=(s,0)

m(r,Aij)

m(r,As0)
< 1 = µ < λ < 1.

Then for a sufficiently large r, we have

(3.18)
∑

(i,j)6=(s,0)

m(r,Aij) < λm(r,As0) .

By Lemma 2.3, for a sufficiently large r and any given ε > 0, we have

(3.19) m

(
r,
f(z + ci)

f(z + cs)

)
= O

(
(log r)ρlog(f)−1+ε

)
, i = 0, · · · , n, i 6= s.

The logarithmic derivative lemma and Remark 2.2 lead to

(3.20) m

(
r,
f (j)(z + ci)

f(z + ci)

)
= O

(
(log(log r))ρlog(f)−1+ε

)
, j = 1, · · · ,m.

Thus, by substituting (3.18), (3.19) and (3.20) into (3.16), for a sufficiently
large r and any given ε > 0, we obtain
(3.21)

m(r,As0) ≤ λm(r,As0) +O
(
(log r)ρlog(f)−1+ε

)
+O

(
(log (log r))ρlog(f)−1+ε

)
.
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From (3.21), it follows that

(3.22) (1− λ)m(r,As0) ≤ O
(
(log r)ρlog(f)−1+ε

)
+O

(
(log (log r))ρlog(f)−1+ε

)
.

By (3.22), we obtain ρlog(f) ≥ ρlog(As0)+1. Thus, Theorem 1.4 is proved.

Proof of the Theorem 1.5. Let f 6≡ 0 be a meromorphic solution of
(1.1). If ρlog(f) =∞, then the result is trivial. Now we suppose ρlog(f) < +∞.
Set

(3.23) δ(∞, As0) = lim inf
r→+∞

m(r,As0)

T (r,As0)
= δ > 0.

Thus from (3.23), for a sufficiently large r, we have

(3.24) m(r,As0) >
1

2
δT (r,As0) .

Thus, by substituting (3.19), (3.20) and (3.24) into (3.16), for a sufficiently
large r and any given ε > 0, we obtain

δ

2
T (r,As0) < m(r,As0) ≤

n∑
i=0
i 6=s

m∑
j=0

m(r,Aij) +
m∑
j=1

m(r,Asj)

+
n∑
i=0

m∑
j=1

m

(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0
i 6=s

m

(
r,
f(z + ci)

f(z + cs)

)
+O(1)

≤
n∑
i=0
i6=s

m∑
j=0

T (r,Aij) +
m∑
j=1

T (r,Asj) +O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log(log r))ρlog(f)−1+ε
)
.

(3.25)

Since max {ρlog(Aij) : (i, j) 6= (s, 0)} < ρlog(As0) , then by Lemma 2.12, there
exists a set E10 ⊂ (1,+∞) of infinite logarithmic measure such that

(3.26) max

{
T (r,Aij)

T (r,As0)
: (i, j) 6= (s, 0)

}
→ 0, r → +∞, r ∈ E10.

Thus, by (3.25) and (3.26), for all r ∈ E10, r → +∞, we have
(3.27)(

δ

2
− o(1)

)
T (r,As0) ≤ O

(
(log r)ρlog(f)−1+ε

)
+O

(
(log (log r))ρlog(f)−1+ε

)
.

It now follows from (3.27) and Lemma 2.11 that ρlog(f) ≥ ρlog(As0)+1. Thus,
Theorem 1.5 is proved.
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Proof of the Theorem 1.6. Let f 6≡ 0 be a meromorphic solution of
(1.1). If ρlog(f) =∞, then the result is trivial. Now we suppose ρlog(f) < +∞.
As in the proof of Theorem 1.4, by substituting (3.18), (3.19) and (3.20) into
(3.16), for a sufficiently large r and any given ε > 0, we have

(3.28) (1− λ)m(r,As0) ≤ O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log(log r))ρlog(f)−1+ε
)
.

By Lemma 2.11, we have

(3.29) lim
r→+∞
r∈E9

log T (r,As0)

log log r
= ρlog(As0) ,

where E9 is a set of r of infinite logarithmic linear measure. Since δ(∞, As0) =

lim inf
r→+∞

m(r,As0)
T (r,As0)

> 0, we obtain

(3.30) lim
r→+∞
r∈E9

logm(r,As0)

log log r
= ρlog(As0) .

Thus, by (3.28) and (3.30), we obtain ρlog(f) ≥ ρlog(As0) + 1. Thus, Theorem
1.6 is proved.
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