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STUDY OF SOLUTIONS OF LOGARITHMIC ORDER TO

HIGHER ORDER LINEAR DIFFERENTIAL-DIFFERENCE

EQUATIONS WITH COEFFICIENTS HAVING THE SAME
LOGARITHMIC ORDER

BY BENHARRAT BELAIDI

Abstract. The main purpose of this paper is to study the growth of solu-
tions of the linear differential-difference equation

L ) = 305 Ay(2) 19 (= 4 ) =0,

i=05=0
where A;;(z) (¢=0,---,n; j=0,---,m) are entire or meromorphic func-
tions of finite logarithmic order and ¢; (0, -+ ,n) are distinct complex num-

bers. We extend some precedent results due to Wu and Zheng and others.

1. Introduction and main results. Throughout this paper, we assume
that readers are familiar with the standard notations and the fundamental
results of the Nevanlinna value distribution theory of meromorphic functions
([12,19]). Let f be a meromorphic function; we define

2
m(r, f) = 217r/0 log™ |f(rei“")|d<p,

_ rn(taf)_n(o’f)
N(r, )—/ . dt +n(0, f)logr,

0

and
T(r,f)=m(r,f)+N(r, f) (r>0)
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is the Nevanlinna characteristic function of f, where log™ x = max(0, log z) for
x >0, and n(t, 00, f) = n(t, f) is the number of poles of f(z) lying in |z| <,
counted according to their multiplicity. Also, for a # oo, we define

1 1 [ 1
m<r’f—a>:m(r’a’f):27r/o 10g+md%

N(r, fi) ~Nira = [ DT g 0,0, 1) 10g,

where n(t, a, f) is the number of zeros of the equation f(z) = a lying in |z| < t,
counted according to their multiplicity. Also, we use the notations u(f), p(f)
to denote the lower order and the order of a meromorphic function f.

To express the rate of growth of meromorphic solutions of infinite order,
we recall the following definition.

DEFINITION 1.1 ([16,(19]). Let f be a meromorphic function. Then the
hyper-order pa(f) of f(z) is defined by

. log log T'(r,
po(f) = lim Supglwf).
r—-+o00 ogr
If f is an entire function, then the hyper-order of f(z) is defined as

p2(f) = lim Supw — lim Sup10g log log M (r, f)
r——+oo logr r——400 logr

where M (7, f) is the maximum modulus of f in the circle |z| = r.

DEFINITION 1.2 ([12]). Let f be an entire function of order p (0 < p <
+00). The type of f is defined as

log M
7(f) = lim supiog (r ) )
r——+00 rP

Similarly, the lower type of an entire function f of lower order p (0 < p < 00)
is defined by
log M
7(f) = lim inf 282\ /) (r, f)

r—-+o00 rH

DEFINITION 1.3 ([12/19]). For a € C = C U {00}, the deficiency of a with
respect to a meromorphic function f is defined as

o m(?“, ﬁ) . N(r, fiia)
e =i ey I ey 0T
m(r, f) N(r, f)

e )= ey T T T
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Recently, the difference counterparts of Nevanlinna theory have been es-
tablished. The key result is the difference analogue of the lemma on the loga-
rithmic derivative obtained by Halburd-Korhonen [10] and Chiang—Feng [6],
independently. Subsequently Halburd and Korhonen [11] showed how all key
results of the Nevanlinna theory have corresponding difference variants as well.
After that, it was with a growing interest that solutions to difference equations
in the complex domain have been investigated by making use of this variant of
the value distribution theory, see [4,/15,/17,/18,20]. In [15|, Laine and Yang
considered complex linear difference equations and obtained the following the-
orem.

THEOREM A ([15]). Let Ao(2),A1(2), -, An(2) be entire functions of fi-
nite order such that among those having the mazximal order p = Jnax {p(A)},
i<n

there is exactly one whose type is strictly greater than the others’. Then for
any meromorphic solution of

An(2) f(z+ 1)+ Ana(2) f(z+n— 1)+ -+ A1(2) f(z + 1)+ Ao(2) f(2) = 0,
we have p(f) > p+ 1.

In |16], Tu and Yi investigated the growth of solutions of a class of higher
order linear differential equations with entire coefficients when most of them
are of the same order, and obtained the following result.

THEOREM B ([16]). Let Ao(z), -, Ax—1(z) be entire functions such that
p(Ag) = p (0< p<+400) and 7(Ag) =7 (0 <7 < +00), and let p(A;) <
p(AO) =p (]: 1,2 ’k_1)7T(Aj) < T(AO) =T (] =1,2,--- ak;_l) Zf

PO+ A () 1Y 4+ A o+ Ao(2) £ =0,
satisfies p(f) = +oo and pa(f) = p(Ao) = p.

From Theorems [A] and [B] we deduce that when there is exactly one dom-
inant coefficient among those coefficients having the same maximal order, we
may obtain the growth relation between the solutions and the coefficients of the
above complex linear difference equation or complex linear differential equa-
tion. In recent paper [18], Wu and Zheng investigated the growth of meromor-
phic solutions of the linear differential-difference equation

(L1) Lz, f) = DD Ay(2) 19 + ) =0,

i=04=0
where A;j(z) (i=0,---,n; j=0,---,m) are entire or meromorphic functions
of finite order and ¢;(0,--- ,n) are distinct complex numbers, where there is

only one dominant coefficient. Hence, from Theorems [A] and [B] a natural
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question emerges: How to express the growth of solutions of when all
coefficients Ag(z),A1(z), -, Ay(2) are entire or meromorphic functions and
of order zero in C? The main purpose of this paper is to make use the concept
of finite logarithmic order due to Chern [5] to extend previous results of Wu
and Zheng [18] for meromorphic solutions to equation of zero order in C.
We recall the following definitions.

DEFINITION 1.4 ([5]). The logarithmic order of a meromorphic function f
is defined as
. log T(r, f)
= limsup —————.
Plog(f) T—)+O<I):) loglog r

If f is an entire function, then

i loglog M(r, f)
=1 _
Prog(f) mSUD e

REMARK 1.1. Obviously, the logarithmic order of any non-constant ratio-
nal function f is one, and thus, any transcendental meromorphic function in
the plane has logarithmic order no less than one. However, a function of log-
arithmic order one is not necessarily a rational function. Constant functions
have zero logarithmic order, while there are no meromorphic functions of log-
arithmic order between zero and one. Moreover, any meromorphic function
with finite logarithmic order in the plane is of order zero.

DEFINITION 1.5. The logarithmic lower order of a meromorphic function
f is defined as

e logT(r, f)
Mlog(f) = lggigf W.

If f is an entire function, then

o loglog M(r, f)
Hog(f) = lim dnf ==

DEFINITION 1.6 ([3]). The logarithmic type of an entire function f with
1 < prog(f) < +o0 is defined by

iy log M (r, f)
Tiog(f) = lirﬁfiop (log )’

Similarly the logarithmic lower type of an entire function f with 1 < peg(f) <
+00 is defined by

. log M(r, f)
r——+00 (]og r):“log(f) ’
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REMARK 1.2. It is evident that the logarithmic type of any non-constant
polynomial P equals its degree deg(P); that any non-constant rational function
is of finite logarithmic type, and that any transcendental meromorphic function
whose logarithmic order equals one in the plane must be of infinite logarithmic
type.

Recently, the concept of logarithmic order has been used to investigate the
growth and the oscillation of solutions of linear differential equations in the
complex plane [3] and complex linear difference and g-difference equations in
the complex plane and in the unit disc ([1,[2,/13},/14,17]). In what follows,
we consider the growth estimates of meromorphic solutions of the homoge-
neous equation with some coefficients having the same maximal order or
maximal lower order, and we obtain the following results.

THEOREM 1.1. Let A;j(2) (i =0,---,n; j=0,---,m) be entire functions
such that there ezists an integer s (0 < s < n) satisfying
(1.2) max{plog(Aij) 1 (4,5) # (5,0)} < plog(Aso) < o0,
and

(13) maX{Tlog(Aij) : plog(Aij) = plog(ASO)v (Z7]) 7& (8,0)} < Tlog(ASO)'
Then every meromorphic solution f # 0 of equation (1.1) satisfies piog(f) >
plog(AsO) + 1.

THEOREM 1.2. Let Ajj(z) (1 =0,---,n; j=0,---,m) be entire functions
such that there exists an integer s (0 < s < n) satisfying
(1.4) max{plog(Aij) (4,7) # (5,0)} < Mlog(Aso) < o0,
and

(1.5)  max{Tog(Aij) : prog(Aij) = thog(Aso), (i,75) # (5,0)} < Tyoe(Aso)-
Then every meromorphic solution f # 0 of equation (1.1)) satisfies piog(f) >
Hlog (ASO) + 1.

THEOREM 1.3. Let H be a set of complex numbers satisfying log dens{|z| :
z€ H} >0, and let Ajj(z) (i=0,---,n; 7=0,---,m) be entire functions
satisfying max{piog(As;) : (i=0,---,n; 7=0,---,m)} < pwithl < p <
+oo. If there exists an integer s (0 < s <n) such that for some constants
0 < B < « and sufficiently small e (0 < e < p), we have

(1.6) |Aso(2)| = exp {a [logr]*~*}

and

(17) ‘AZ](Z)’ < exXp {ﬁ [logr]p_a} ’ (Z7]) 7& (570)

as |z| = r — +oo for z € H, then every meromorphic solution f # 0 of

equation (1.1) satisfies piog(f) > prog(Aso) + 1.
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REMARK 1.3. By the assumptions of Theorem|1.3} we obtain piog(Aso) = p.
Indeed, we have piog(Aso) < p. Suppose that piog(Aso) = p < p. Then, by
Definition (1.4 and (1.6), we have for any given e (0 < e < £5#)

exp {a [log r]’ ™} < |As0(2)| < exp {[logr]"*¢} .

as |z| =r — +oo for z € H. By ¢ (0 <e < £5%) this is a contradiction as
r — 400. Hence piog(Aso) = p-

THEOREM 1.4. Let Ajj(z) (i =0,---,n; j=0,---,m) be entire functions
of finite logarithmic order such that there exists an integer s (0 < s <n) sat-
1sfying

> m(r,Ay)
. (4,3)#(s,0)
1.8 lim su < 1.
( ) r—>+oop m('r'7 ASO)

Then every meromorphic solution f # 0 of equation (L.1)) satisfies piog(f) >
plog<A50) + 1.
The following theorems give some properties of the logarithmic order of mero-

morphic solutions of (|1.1)) in the case when the coefficients are meromorphic
functions.

THEOREM 1.5. Let A;j(z) (i=0,---,n; j=0,---,m) be meromorphic
functions such that there exists an integer s (0 < s < n) satisfying piog(Aso) >
max{piog(Aij) : (i,5) # (5,0)} and §(co, Ayg) > 0. Then every meromorphic
solution f # 0 of equation satisfies plog(f) > plog(Aso) + 1.

THEOREM 1.6. Let A;j(z) (i=0,---,n; j=0,---,m) be meromorphic
functions of finite logarithmic order such that there exists an integer s
> m(nAy)
(0 < s < n) satisfying lim sup% <1 and 6(oc0, Asp) > 0.

r—400

Then every meromorphic solution f # 0 of equation (1.1)) satisfies piog (f) >
plog (ASO) + 1.

2. Some lemmas. We recall the following definitions. The linear measure
of a set £ C (0,400) is defined as m(FE) = 0+°° X£(t) dt and the logarithmic

measure of a set F' C (1,400) is defined by Im(F) = 1+°° XFt(t) dt, where

xH(t) is the characteristic function of a set H. The upper density of a set
E C (0,400) is defined by

-— E
densE = limsup w
r—s+00 r

The upper logarithmic density of a set F' C (1,400) is defined by

_ Im(F N[l
log dens(F) = lim sup M
r—+00 logr
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It is easy to obtain the following remark.

REMARK 2.1. For all H C [1,400) the following statements hold:
i) If Im(H) = oo, then m(H) = oc;
ii) If densH > 0, then m(H) = oo;
iii) If logdensH > 0, then Im(H) = oo.
LEMMA 2.1 (|8]). Let f(2) be a transcendental meromorphic function in the
plane, and let a > 1 be a given constant. Then there exist a set By C (1,+00)

of finite logarithmic measure, and a constant B > 0 depending only on o and
(m,n) (m,n € {0,1,--- ,k}) m < n such that for all z with |z| = r ¢ [0, 1|UE},

we have
‘ /() B<T(ar, /)
r

7 (2) (log® r) log T (ar, f)> .

From the above lemma, we obtain the following result.

LEMMA 2.2. Let f(z) be a transcendental meromorphic function in the
plane with 1 < piog(f) = p < 400, and let € > 0, o > 1 be given constants.
Then there exist a set Eo C (1,400) of finite logarithmic measure, and (m,n)
(m,n € {0,1,--- ,k}) m < n such that for all z with |z| = ¢ [0,1] U Ea, we

have
< < (log r)Prote ) e
T

Fim(z)

PRrROOF. Since f(z) has finite logarithmic order piog(f) = p < +00, so given
e (0 < £ < 2) and sufficiently large r > R, we have

‘ F(2)

(2.1) T(r, f) < (logr)""2 .
Combining (2.1) with Lemma for o > 1, there exist a set Fy = [0, R]U E}
of finite logarithmic measure and a constant B > 0, such that if |z| = r &
[0,1] U E5, we obtain
(n) 1 rts A

S(z) <B %(loga r)log(log ar)’*2

fm(z) r
(2.2)

< <(10g7~)p+a+€>"m'
r

d

REMARK 2.2. It is shown in |7, p. 66], that for an arbitrary complex number
¢ # 0, the following inequalities

(1 +o(W)T(r—lel, f(2)) ST(r, f(z+¢)) < (1 +0(1))T(r + e[, f(2))
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hold as r — 400 for an arbitrary meromorphic function f(z). Therefore, it is
easy to obtain

plog(f +c) = Plog(f)a .Ulog(f +c) = F‘log(f)-

LeMmA 2.3 ([1]). Let mi,m2 be two arbitrary complex numbers such that
m # n2 and let f(z) be a finite logarithmic order meromorphic function. Let
p be the logarithmic order of f(z). Then for each € > 0, we have

m<r, 7]0(2 + 771)) = O((log r)pfl%) )
fz+m)

LEMMA 2.4 ([6]). Let f be a meromorphic function, n a non-zero complex
number, and let v > 1, and € > 0 be given real constants. Then there exist a
subset E3 C (1,400) of finite logarithmic measure, and a constant A depending
only on vy and n, such that for all |z| =r ¢ E3U|0, 1], we have

WH < A(TW’ Dy n(ZT) log” rlog* n(w)) :

r

'10g
where n(t) = n(t, o0, f) +n(t,00,1/f).

LEMMA 2.5 ([8]). Let f be a transcendental meromorphic function, let j
be a non-negative integer, let a be a value in the extended complex plane, and
let a > 1 be a real constant. Then there exists a constant R > 0 such that for
all r > R, we have

(]) < J
(2.3) n('r, a, f ) ]

T(ar, f).

LEMMA 2.6. Let f be a meromorphic function with 1 < poeg(f) < +o0.
Then there exists a set Ey C (1,400) of infinite logarithmic measure such that
forr € By C (1,400), we have

T(r,f) < (log T)“log(f)+€.
PROOF. By definition of the logarithmic lower order, there exists a se-
quence {r,}o"; tending to oo, satisfying (1+ 1) 7, < rp41 and

tim BT D) .

rmn—oo  loglogry,
Then for any given € > 0, there exists an integer ni such that for all n > nq,

T(rn, f) < (logry )" T5

Set B4, = |J [niﬂrn,rn] . Then for r € E4 C (1,400), we obtain
n=ni

T(r, f) < T(rn, f) < (logry)"=s) 3 < (1og 1r> mod )5 < (log ryiosl e,
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00 Tn o0
and Im(Es) =Y. [ % =3 log(1+ 1) = oo. Thus, Lemmais proved.

n=ni _n_ n=n
1 P ) 1

d

LEMMA 2.7. Let f be a meromorphic function, n a non-zero complex num-
ber, and € > 0, B > 1 be given real constants. Then there exists a subset
E5 C (1,400) of finite logarithmic measure, such that if f has finite logarith-
mic order p, then for all |z| =1 ¢ E5 U [0, 1], we have

ogr)PTATe z og r)PTA+eE
mo L T [

r

Proor. By Lemma there exist a subset E5 C (1,+00) of finite loga-
rithmic measure, and a constant A depending only on ~ and 7, such that for
all |z| =7 ¢ E5 U |0, 1], we have

L0 < (T g ).

where n(t) = n(t, o0, f) + n(t,00,1/f). By using (2.3) and (2.5)), we obtain

log WH < A(w

log r

(2.5) log

12
log” log™ <1OgaT(a'yr, f)>>

logﬁ T

r

(2.6) <B (T(ﬂh f) log T'(Br, f)) ,

where B > 0 is some constant and § = a-y > 1. Since f(z) has finite logarithmic
order piog(f) = p < +00, so given €, 0 < € < 2, for sufficiently large r, we have

(2.7) T(r,f) < (10g7“)p+% .
Then by using and , we obtain
g |20 < (T(ﬁr, P E T g (i, f))
(2.8)
< B(log Br)*5 logfr log(log )+ < (%% TZPHH
From , we easily obtain (2.4)). O

LEMMA 2.8. Let n1,m2 be two arbitrary complex numbers such that ny # 1
and let f(z) be a meromorphic function of finite logarithmic order p. Let
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e >0 and 8 > 1 be given. Then there exists a subset Eg C (1,400) of finite
logarithmic measure such that for all |z| = r ¢ Eg, we have

+84¢ +6+¢
(2.9  exp {—(log i } ‘ fEtm)] o {(log Tip } .
flz+m)| ‘f(2+772+771 —12)

T Z%-nz
Grm| | Te+m) 7 1) -

Then by using Lemma, for any given € > 0, 8 > 1 and all |z + | = R ¢
E5 U 0,1], such that Im(Es5) < oo, we obtain

exp {—“()g ’”W“} < exp {_ (log(|2] + [na]))" 2 }

PROOF. We can write

T |Z%—Uﬂ

p+B+5
] BT

R flz+m2)
:‘f(2+772+771_7]2) < exp (log R)" 7+

f(z+m2) - R
p+B+5 p+B+e

= o d Q082+ D)™ [ (logry Y

|z + n2| T

where |z| = r ¢ Eg and Ejg is a set of finite logarithmic measure.
By using Lemmas we can generalize Lemma, and Lemma
into finite logarithmic lower order case as following. O

LEMMA 2.9. Let f(z) be a transcendental meromorphic function in the
plane with 1 < pnog(f) = p < +00, and let € > 0, a > 1 be given constants.
Then there exist a set E;y C (1,400) of infinite logarithmic measure, and (m,n)
(m,n €{0,1,--- ,k}) m < n such that for all z with |z| =r € E7, we have

() | _ [ Qogrytotey "
‘f<m><z>§( r ) |

LEMMA 2.10. Let n1,n2 be two arbitrary complex numbers such that n # 1
and let f(z) be a meromorphic function of finite logarithmic lower order u. Let
e >0 and 8 > 1 be given. Then there exists a subset Eg C (1,+00) of infinite
logarithmic measure such that for all |z| = r € Eg, we have

+B+e¢ +B+e
exp {_ (log )" } 'f z4+m) b { (logri“ } .

r Z—|—772
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LEMMA 2.11 ([1]). Let f be a meromorphic function with piog(f) > 1. Then
there exists a set Eg C (1,+00) of infinite logarithmic measure such that

logT'(r, f) B

rr_?};;o loglogr

LEMMA 2.12 ([1]). Let fi, fo be meromorphic functions satisfying piog(f1) >
Plog(f2) . Then there exists a set Erg C (1,400) of infinite logarithmic measure
such that for all r € Fyg, we have

im T(T7 f2)
r—+oo T(T7 fl)

LEMMA 2.13. Let f be an entire function with 1 < puog(f) < +oo. Then
there exists a set E1; C (1,+00) of infinite logarithmic measure such that

zlog(f) = lim logM(T7 f>

7‘2;»1010 (log r)#log(f) ’

PROOF. By the definition of the logarithmic lower type, there exists a
sequence {ry, } -, tending to oo, satisfying (1 + %) Tn < Tpa1, and

- log M (rn, f)
IIOg(f) - T —>00 (10g rn)ﬂlog(f) )
Then for any given € > 0, there exists an n; such that for n > n; and any
r € [niﬂrn,rn], we have
log M(;%57n: f) _ log M(r, f) < log M (ry, f)
(10gfrn)ﬂlog(f) - (10g T-)Mlog(f) - (10g nL_Hrn)Nlog(f).
It follows that
(log Tl,ilrn>ulog(f) logM(nLH’r’n,f) < ]ogM(r’ f)
log Tn (10g nLHrn)#log(f) - (log T)ﬂlog(f)

< log M (ry, f) ( log 7y, )mog(f)

= (log 7y )tee) \ log 1y
Set .
n
Ell - ngll |:n+17”n;7’n:| .
Then we have
log M log M (74,
o Mrf) oM f)

ngﬁo (10g T)Mlog(f) Tn—r+00 (]_Og ’rn)ll‘log(f) o8
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dr _ oo 1
and Im(En) = [ = > [ %=X log(l + ﬁ) = +o0. O

n=nji _n_ n=n
Eyq 1 +17"n 1

LEMMA 2.14 ([9]). Let ¢ : [0,4+00) = R and ¢ : [0,4+00) — R be monotone
non-decreasing functions such that ¢(r) < 1(r) for all r ¢ E12 U [0,1], where
Ei2 C (1,400) is a set of finite logarithmic measure. Let v > 1 be a given
constant. Then there exists an ro = ro(y) > 0 such that o(r) < ¢(yr) for all
> 1.

3. Proofs of the Theorems.

PrROOF OF THEOREM [[.1] Let f # 0 be a meromorphic solution of ([1.1]).
We suppose piog(f) < plog(Aso) +1 < +00. We divide through equation (1.1))
by f(z+ ¢s) to get

Nz +e) || fz+e)
2)| < A
zz;jz:o‘ i ‘ f(z+¢) ’f(z—i—cs)
(3.1) 7
Z 4+ cs)
+Z‘A5J '+>

In relation to (1.2) and ({1.3] -, we set
p= max{plog(Aij) : (Zvj) 7& (570)}7
and
7 = max{Tog(Aij) : plog(Aij) = prog(Aso) = (z,7) # (s,0)}.
Then for a sufficiently large r, we have

(3:2) [445(2)] < exp {(l0g )"}, (0,5) # (5,0)
if prog(Aij) < prog(Aso), and
(33) Ayl < exp{(r+e) logr) 0L () # (5,0)

if prog(Aij) = plog(Aso). By Lemma and Remark for any given ¢ > 0
and a > 1, there exists a set Ea C (1,400) of finite logarithmic measure such
that for all |z] = ¢ [0,1] U Ea, we have

- < (log T)Plog(f(z+ci))+a+€ )j

r

1 Prog(f)tate J
:<(Ogr)r (izoala"'an7j:17"'7m)'

fO(z+¢)
fz+¢)

(3.4)
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By Lemma there exists a set Fg C (1,+00) of finite logarithmic measure
such that for all |z| = r ¢ Eg, we have for any given € > 0 and § > 1

1 plog(f)+ﬁ+5
Sexp{(ogr) (i:0717~'-,n,i758).

T

o [t

Z + Cg

Then we can choose an € > 0 sufficiently small to satisfy
(3.6) T 4 26 < Tiog(As0), max {p, pog(f) — 1} + 2e < plog(Aso) -
Substituting (3.2), (3.3), (3.4) and (3.5)) into (3.1), for [2[ =r & [0, 1]JUE,U Eg,

we get
Prog(f)+B+e
M(r, Aso) < exp { (logr)™* } O <6Xp {(T +¢) (log r)plog(AsO)}
r
(37) 1 plog(f)+04+5 m
+exp{(logr)/)+€}) <( ogr) - ) ’

where |As(2)] = M (r, Aso). By (3.6) and (3.7) and Lemma we get

log M (7, As
Rog(A) = limsup 82U )

(A = < Tiog(As) —
r—stoo (logr)Pres(As0) — T+e < Tog(As0) — €

which is a contradiction. Hence piog(f) > prog(Aso) + 1. O

PROOF OF THE THEOREM [L.2l Here, we use a method similar to the one
in the proof of Theorem Let f # 0 be a meromorphic solution of ([1.1)).
We suppose fiog(f) < piog(Aso) +1 < +oo. In relation to (1.4 and (L.5)), we

set
P11 = max{plog(ASO) : (27]) 7& (S,O)},
and
T = maX{Tlog(Aij) : plog(ASO) = Nlog(AsO) : (17]) # (5’0)}
Then for a sufficiently large r, we have

(3.8) [435(2)] < exp {(log )"}, (i,) # (5,0)
if prog(Aij) < tog(Aso) , and
(39) Ay < exp{(n +e) (logr) 0L (i,5) # (5,0)

if prog(Aij) = thog(Aso) . By Remark Lemma and Lemma for
any given ¢ > 0, a > 1, § > 1, there exists a set Fg C (1,+00) of infinite

logarithmic measure such that for all |z| = r € Eg, we have

) _ fog f)+ate \ 7
f9z+¢) < ((log"f’) ) (i=0,1,---,n,j=1,---,m)

f(z+¢)

(3.10) ‘ .
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and

(3.11)
r

Hlog(f)"l‘ﬁ‘f’a
< exp { (logr)

‘fz—i—c } (1=0,1,---,n, i #s).

Then we can choose an € > 0 sufficiently small to satisfy
(3.12) 1+ 26 < Typ(As0 ) max {p1, fhog (f) — 1} + 2 < piog (As0) -

Substituting (3.8)—(3.11)) into (3.1), for |z| = r € Es, we get

Hlo (f)""ﬂ""e
M(r, Aso) < exp { il } O(exp {(7’1 +¢) (log r)”log(ASO)}
r

1 mogl f)+ate \ ™
+ exp {(log 7“)m+6}) <( ogr)™ )

r

(log r

(3.13)

where |As(2)| = M(r, As). By (3.12), (3.13) and Lemma we get

Tiog(Aso) = lim inf STt e < Tipe(As0) — €

T:é+oo (log r)#IOg (As0)

which is a contradiction. Hence piog(f) > fiiog(Aso) + 1. O

PRrOOF OF THE THEOREM [[.3l By Remark|1.3| we know that pjog(As0) =
p. Let f # 0 be a meromorphic solution of We suppose piog(f) <
Plog(As0) +1 = p+1 < 400. By the assumptions of Theorem there is a set
H of complex numbers satisfying log dens{|z| : z € H} > 0 such that for z € H,
we have and as |z] =r — 4o00. Set Hy = {r = |2| : z € H}, since
logdens{|z] z € H} > 0. Then by Remark for Hy there is [, % = co.
Clearly, (3.4) and (3.5) hold for all 2 satlsfymg z| =r ¢ 0,1]UE>U Eg, where
FE5 and E6 are deﬁned smularly as in the proof of Theorem [I.I] Substituting

(L-6), (7). (3-4) and ( into (3.1)), for |2| = r € Hi\[0,1] U E5 U Eg, and

anygivens 0<5<ppl°gf+1 , we get

exp {a[logr]’°} < nexp {B[logr]’°}
{ (log T)Plog(f)+5+5 } ( (log T)Plog(f)+a+8 )m
- exp

r r

It follows that
(3.14)

Plog(f)+B+e Prog(f)+ate m
exp {(a = B) log <} < mexp { (1og 1) } <<1ogr> : ) |

r r
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By 0<e< %(f)“ and (3.14)), we obtain a contradiction. Hence we get
Pog(f) = p+1 = pog(Aso) + 1. 0

PROOF OF THE THEOREM [L.4l Let f # 0 be a meromorphic solution of
(1.1]). If p1og(f) = o0, then the result is trivial. Now we suppose piog(f) < +00.
We divide through equation (1.1 by f(z + ¢s) to get

(3.15)
f(j (z+c) flz+e) & FO (2 + ¢s)
ZZAU + ) Ag(z) 2
i fz+c) flz+cs) st f(z+cs)
It follows
m(r, Aso) < ZZm r, Aij) Z (r, Asj)
z;&O] =0 7j=1
(3.16) )
fU
+22m< Z+02>+Zm< )>—|—O(1).
1=07=1 8)
i#s
Suppose that
iaZlon "
/L’] 87 _
(3.17) (e A) <l=p< A<l
Then for a sufficiently large r, we have
(3.18) > m(r, Ay) < Am(r, Ag) .
(1,4)#(5,0)

By Lemma for a sufficiently large r and any given £ > 0, we have
f(Z+Ci)> (f)—1+ . .
3.19 m\r, ——= :O<10 7)Plog €>’7J:O,---7n’7j S.
319)  m(n )~ 0((osn .
The logarithmic derivative lemma and Remark [2.2]lead to

(3.20) m(r, W) = O((log(log r))plog(f)_prs) ,j=1,---,m

Thus, by substituting (3.18)), (3.19) and (3.20) into (3.16]), for a sufficiently

large r and any given € > 0, we obtain
(3.21)

m(r, Aso) < Am(r, Aso) + O((log r)pl"g(f)*lﬁ) + O((log (log T))pl"g(f)flﬁ).
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From (3.21]), it follows that
(3.22) (1=X)m(r,Agp) < O((log r)plog(f)_HE) + O((log (log r))plog(f)_1+€).

By (8.22), we obtain piog(f) > prog(Aso) +1. Thus, Theorem [I.4]is proved. [

PROOF OF THE THEOREM [L.Al Let f # 0 be a meromorphic solution of
(L.I). If piog (f) = o0, then the result is trivial. Now we suppose piog(f) < +00.
Set

m(r, Aso)

Thus from (3.23)), for a sufficiently large r, we have

=J>0.

1
(3.24) m(r, Aso) > §5T(r, Ag) -

Thus, by substituting (3.19)), (3.20) and (3.24) into (3.16]), for a sufficiently

large r and any given € > 0, we obtain

g T'(r,Aso) <m(r,As) < ZZ m(r, Aj) +§:mrA5J

z#g)g =0 Jj=1
G ) n
+sz<r7f <z+cl>+ m< K4 o
: - f(Z + Cz Z T Cs
< ZZ T(r, Aij) + Z r, Agj) + 0( (log 7)Preelf 1+5)
i=0j=0 =
i#£s

((log(log ,,,))Plog(f)*lJrs) '

Since max {piog(Aij) : (i,4) # (5,0)} < plog(Aso) , then by Lemma 2.12] there
exists a set Fg C (1 +00) of infinite logarithmic measure such that

(3.26) max{ T, Ay) (i,5) # (s,())} — 0, r — 400, r € Ep.
(7' ASO)

Thus, by (3.25) and (3.26)), for all » € Ejg, r — +00, we have

(3.27)

4]

(2 - 0(1)> T'(r, Aso) < O((log r)mog(f)_HE) + O((log (log r))plog(f)_HE).

It now follows from ([3.27)) and Lemma that piog(f) > prog(Aso) + 1. Thus,
Theorem [I.5] is proved. O
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PROOF OF THE THEOREM [L.Gl Let f # 0 be a meromorphic solution of
(L.1)). If pog(f) = o0, then the result is trivial. Now we suppose piog(f) < +00.

As in the proof of Theorem by substituting (3.18)), (3.19) and (3.20) into
(3.16)), for a sufficiently large r and any given £ > 0, we have

(3.28) (L —=A)m(r,As) < O((log r)plog(f)*lJrE) +O((log(log T))Plog(f)*1+€) '
By Lemma [2.T1] we have

(3.29) i 08T (r As0)

= A
r—+oo  loglogr Prog(Aso)
9

rekE

where Ejy is a set of r of infinite logarithmic linear measure. Since §(o00, Asp) =

1 1 ( 7AS ) 1
lr}gig’ % > 0, we obtain
logm(r, Aso)
(3.30) A oglogr - Pes(4so)
re kg
Thus, by (3.28) and (3.30]), we obtain piog(f) > piog(Aso) + 1. Thus, Theorem
[1.6]is proved. O
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