Remark on the Calabi flow with bounded curvature
Wybierz format
RIS BIB ENDNOTERemark on the Calabi flow with bounded curvature
Data publikacji: 05.06.2013
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 107-115
https://doi.org/10.4467/20843828AM.12.003.1126Autorzy
Remark on the Calabi flow with bounded curvature
In this short note we prove that if the curvature tensor is uni-formly bounded along the Calabi flow and the Mabuchi energy is proper,then the flow converges to a constant scalar curvature metric.
1. Aubin T., Réduction du cas positif de l’équation de Monge–Amp`ere sur les variétés kählériennes compactes `a la démonstration d’une inégalité, J. Funct. Anal., 57, No. 2 (1984), 143–153.
2. Calabi E., Extermal Kähler metrics, Seminar on Differential Geometry, pp. 259–290, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton N.J., 1982.
3. Chen X.X., On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices, No. 12 (2000), 607–623
4. Chen X. X., He W. Y., On the Calabi flow, Amer. J. Math., 130, No. 2 (2008), 539–570.
5. Chen X. X., He W. Y., The Calabi flow on toric Fano surfaces, Math. Res. Lett., 17, No. 2 (2010), 231–241.
6. Chrusciel P.T. Semi-global existence and convergence of solutions of the Robinson–Trautman (2-dimensional Calabi) equation, Comm. Math. Phys., 137, No. 2 (1991), 289–313.
7. Donaldson S. K. Scalar curvature and stability of toric varieties, J. Differential Geom., 62, No. 2 (2002), 289–349.
8. Fang H., Lai M., Song J., Weinkove B., The J-flow on Kähler surfaces: a boundary case, arXiv:1204.4068.
9. Guan D., Extremal solitons and exponential C∞ convergence of the modified Calabi flow on certain CP1 bundles, Pacific J. Math., 233, No. 1 (2007), 91–124.
10. Guedj V., Zeriahi A., The weighted Monge–Amp`ere energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, No. 2 (2007), 442–482.
11. Huang H., Convergence of the Calabi flow on toric varieties and related Kähler manifolds, arXiv:1207.5969.
12. Huang H., Toric surfaces, K-stability and Calabi flow, arXiv:1207.5964.
13. Lelong P., Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris–London–New York, 1968.
14. Mabuchi T., K-energy maps integrating Futaki invariants, Tohoku Math. J. (2), 38, No. 4 (1986), 575–593.
15. Phong D. H., Song J., Sturm J., Weinkove B., The Moser-Trudinger inequality on Kähler–Einstein manifolds, Amer. J. Math., 130, No. 4 (2008), 1067–1085.
16. Phong D.H., Sturm J., On stability and the convergence of the Kähler-Ricci flow, J. Differential Geom., 72, No. 1 (2006), 149–168.
17. Ruan W. D., On the convergence and collapsing of Kähler metrics, J. Differential Geom., 52, No. 1 (1999), 1–40.
18. Schoen R., Uhlenbeck K., A regularity theory for harmonic maps, J. Differential Geom., 17, No. 2 (1982), 307–335.
19. Song J., Weinkove B., On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61, No. 2 (2008), 210–229.
20. Székelyhidi G., The Calabi functional on a ruled surface, Ann. Sci. Éc. Norm. Supér. (4),42, No. 5 (2009), 837–856.
21. Székelyhidi G., The Kähler–Ricci flow and K-polystability, Amer. J. Math., 132, No. 4(2010), 1077–1090.
22. Tian G., Kähler–Einstein metrics with positive scalar curvature, Invent. Math., 130, No.1 (1997), 1–37.
23. Tosatti V., Kähler–Ricci flow on stable Fano manifolds, J. Reine Angew. Math., 640(2010), 67–84.
24. Weinkove B., On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom., 73, No. 2 (2006), 351–358.
25. Zhou B., Zhu X., Relative K-stability and modified K-energy on toric manifolds, Adv.Math., 219, No. 4 (2008), 1327–1362
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 107-115
Typ artykułu: Oryginalny artykuł naukowy
University of Notre Dame, Notre Dame, Indiana, USA
Publikacja: 05.06.2013
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
Angielski