
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA

doi: 10.4467/20843828AM.12.008.1126 FASCICULUS L, 2012

REMARK ON THE CALABI FLOW WITH BOUNDED

CURVATURE

by Gábor Székelyhidi

Abstract. In this short note we prove that if the curvature tensor is uni-
formly bounded along the Calabi flow and the Mabuchi energy is proper,
then the flow converges to a constant scalar curvature metric.

Let (M,ω) be a compact Kähler manifold. For any Kähler potential ϕ,
such that ωϕ = ω+

√
−1∂∂̄ ϕ is positive, Aubin’s I-functional [1] is defined by

I(ϕ) =

∫
M
ϕ(ωn − ωnϕ).

Our main result is the following.

Theorem 1. Given constants K > 0 and α ∈ (0, 1), there is a C > 0
with the following property. If ωϕ = ω+

√
−1∂∂̄ ϕ satisfies |Rm(ωϕ)| < K and

I(ϕ) < K, then ωϕ > C−1ω and ‖ωϕ‖C1,α(ω) < C.

This result should be compared with Chen–He [4, Theorem 5.1], where
only a bound on the Ricci curvature is assumed, but instead of I(ϕ) the C0-
norm of ϕ is assumed to be bounded. Note that in contrast with the result
in [4], our proof is by contradiction and it does not give explicit control of the
constant C. It would be interesting to obtain bounds on C depending on K
and the geometry of (M,ω). In Example 7 we will show that the assumption
of a bound on I(ϕ) is sharp in a certain sense.

The proof of Theorem 1 relies on two ingredients. One is the ε-regularity
statement for harmonic maps, as was used in Ruan [17], and the other is some
properties of plurisubharmonic functions and their Lelong numbers, taken from
Guedj–Zeriahi [10]. We will review these in Section 1.



108

Our main application of the theorem is to the Calabi flow. This is the
fourth order parabolic flow

∂

∂t
ϕ = S(ωϕ)− Ŝ,

introduced by Calabi [2], where S(ωϕ) is the scalar curvature of ωϕ and Ŝ is
its average. In Chen–He [4] it was shown that the flow exists as long as the
Ricci curvature of the metrics remains bounded. In general little is known
about the behavior of the Calabi flow, but there are many result in special
cases, e.g. [5, 6, 9, 20]. In this paper we study the flow under the simplifying
assumption that the curvature remains uniformly bounded for all time. The
Kähler–Ricci flow has been studied previously under the same assumption (see
e.g. [16, 21, 23]), the goal being to relate convergence of the flow to some
algebro-geometric stability condition. The Calabi flow poses extra difficulties,
since the diameter is not apriori bounded and collapsing can occur, as can be
seen in the examples in [20]. Recently Huang [11,12] has studied the flow on
toric manifolds, and our result can be seen as extending some of his work to
general Kähler manifolds. The following is a direct consequence of Theorem 1.

Theorem 2. Suppose that the Mabuchi energy is proper on the class [ω],
and the curvature remains uniformly bounded along the Calabi flow with ini-
tial metric ω. The flow then converges exponentially fast to a constant scalar
curvature metric in the Kähler class [ω].

We will review the notion of properness of the Mabuchi energy in Section 1.
The same proof can be used to prove a similar result under the assumption
that the “modified” Mabuchi energy is proper, with the limit being an extremal
metric, but we will not discuss this.

Acknowledgements. I would like to thank Valentino Tosatti and Hong-
nian Huang for useful comments.

1. Background material.
Plurisubharmonic functions and Lelong numbers. First we summarize the

relevant ideas from [17]. The basic observation is that the identity map ι :
(M,ω)→ (M,ωϕ) is harmonic. The energy density of ι is given by

e(ϕ) = Λω(ωϕ) = ∆ϕ+ n.

The ε-regularity estimate of Schoen–Uhlenbeck [18] for harmonic maps states
(Proposition 2.1 in [17]):
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Proposition 3. Suppose that |Rm(ωϕ)| < K. There exists an ε > 0
depending on ω and K, such that if r > 0 and x ∈M satisfy

(1) r2−2n
∫
Br(x)

e(ϕ)ωn < ε,

then

sup
Br/2(x)

e(ϕ) <
4r−2n

ε

∫
Br(x)

e(ϕ)ωn < 4r−2.

The key observation in [17] is that the expression in (1) also appears in
the definition of the Lelong number of a plurisubharmonic function at x. We
write

PSH(M,ω) = {ϕ ∈ L1(M) : ϕ is upper semicontinuous,

and ω +
√
−1∂∂̄ ϕ > 0}.

If ϕ ∈ PSH(M,ω) and x ∈M , then the Lelong number [13] ν(ϕ, x) of ϕ at x
is defined to be

ν(ϕ, x) = lim
r→0

cnr
2−2n

∫
Br(x)

√
−1∂∂̄ ϕ ∧ ωn−1,

where cn is a normalizing constant.
We now review the relevant results in [10]. Recall that

E(M,ω) ⊂ PSH(M,ω)

is defined to be the set of ϕ ∈ PSH(M,ω), such that

lim
j→∞

(ω +
√
−1∂∂̄ ϕj)

n(ϕ 6 −j) = 0,

where ϕj = max{ϕ,−j}. This is a natural class of plurisubharmonic functions,
on which the complex Monge–Ampère operator is well-defined. For us their
most important property is Corollary 1.8 from [10]:

Proposition 4. Any ϕ ∈ E(M,ω) has zero Lelong number at every x ∈M .

An important subset of E(M,ω) consists of the elements of finite energy,
E1(M,ω), defined by

E1(M,ω) = {ϕ ∈ E(M,ω) : ϕ ∈ L1(M,ωnϕ)}.

For elements in E1(M,ω) let us write

E(ϕ) = −
∫
M
ϕωnϕ.

Corollary 2.7 in [10] states:
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Proposition 5. Suppose that ϕj ∈ E1(M,ω) is a sequence converging
to ϕ in L1(M) such that ϕj 6 0 and E(ϕj) is uniformly bounded. Then
ϕ ∈ E1(M,ω).

The Mabuchi functional. The Mabuchi functional [14] is a functional

M : [ω]→ R

on the Kähler class [ω], which is most easily defined by its variation. If ωt =
ω +
√
−1∂∂̄ ϕt, then

d

dt
M(ωt) =

∫
M
ϕt(Ŝ − S(ωt))ω

n
t ,

where Ŝ is the average scalar curvature. One can normalize so thatM(ω) = 0
for a fixed reference metric ω ∈ [ω]. It is clear from the variation that constant
scalar curvature metrics are the critical points ofM. For us the most important
notion is that of properness.

Definition 6. The Mabuchi energy is proper on the class [ω], if there is
an increasing function f : R→ R with f(x)→∞ as x→∞, such that

M(ωϕ) > f(I(ϕ)),

for all metrics ωϕ = ω +
√
−1∂∂̄ ϕ.

In [11, 12] it was used that in the toric case uniform K-stability is known
to imply the properness of the Mabuchi energy by the work of Donaldson [7]
and Zhou–Zhu [25], and moreover this is a condition that can be checked in
certain cases. There are also other, non-toric, examples where properness of
the Mabuchi energy is known, to which our result can be applied. For instance
when M admits a positive Kähler–Einstein metric and has no holomorphic
vector fields then the Mabuchi energy is proper in c1(M) (see Tian [22] and
Phong–Song–Sturm–Weinkove [15]). If c1(M) = 0, then the same is true in
every Kähler class. If c1(M) < 0, then the work of Song–Weinkove [19] gives
an explicit neighborhood of the class −c1(M), where the Mabuchi energy is
proper (see also [3], [24], [8]).

2. Proofs of the results. We can now proceed to the proof of Theorem 1.

Proof of Theorem 1. We argue by contradiction. Given a constant
K > 0, suppose that there does not exist a suitable C > 0 as in the statement
of the proposition. We can then choose a sequence of smooth functions ϕk ∈
PSH(M,ω), such that ωk = ω +

√
−1∂∂̄ ϕk satisfy

|Rm(ωk)| < K, I(ϕk) < K,
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but there is no C for which ωk > C−1ω and ‖ωk‖C1,α(ω) < C for all k. We can
assume that

‖ωk‖C1,α(ω) + sup Λωkω > k.

Without loss of generality we can modify each ϕk by a constant in order
to let supM ϕk = 0. A standard argument using Green’s formula and the
inequality ∆ϕk > −n yields

(2)

∫
M
ϕk ω

n > −C1

for some constant C1. It then follows from the bound I(ϕk) < K, that

(3) E(ϕk) = I(ϕk)−
∫
M
ϕkω

n < K + C1.

Since each ωk is in the fixed class [ω], we can choose a subsequence (also
denoted by ωk for simplicity) such that the ωk converge to a limiting current
ω∞ = ω +

√
−1∂∂̄ ϕ∞ weakly. It then follows that ϕk → ϕ∞ in L1, so (3)

together with Proposition 5 imply that ϕ∞ ∈ E1(M,ω). Now Proposition 4
implies that ϕ∞ has vanishing Lelong numbers.

Let x ∈M and δ > 0. Since ν(ϕ∞, x) = 0, there exists an r > 0 such that

cnr
2−2n

∫
Br(x)

√
−1∂∂̄ ϕ∞ ∧ ωn−1 < δ.

By choosing r smaller we can assume that

cnr
2−2n

∫
Br(x)

ω∞ ∧ ωn−1 < δ.

By the weak convergence of ωk to ω∞ we can choose N > 0 such that

cnr
2−2n

∫
Br(x)

ωk ∧ ωn−1 < δ, for k > N.

Then by choosing δ sufficiently small, we can ensure that for k > N we have

r2−2n
∫
Br(x)

e(ϕk)ω
n < ε.

Proposition 3 then implies that

sup
Br/2(x)

e(ϕk) < 4r−2

for k > N . For each x we obtain a different radius r, but the balls Br/2(x)
cover M , and so we can choose finitely many of them which still give an open
cover. It follows that we can choose a large N , and small r > 0 such that

∆ϕk + n = e(ϕk) < 4r−2
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on all of M , for k > N . In particular there is a constant C2 such that

∆ϕk < C2 for all k,

and this gives upper bounds

(4) ωk < (1 + C2)ω

on the metrics ωk. Using Green’s formula again, together with the bound (2),
we get a uniform C0 bound on the ϕk.

To obtain further bounds on the metrics, we could proceed as in Chen–
–He [4] Theorem 5.1. More directly, let

(5) Fk = log
ωnk
ωn
,

and note that √
−1∂∂̄ Fk = Ric(ω)−Ric(ωk).

The upper bound (4) on the metrics ωk and the uniform curvature bound imply
that

(6) |∆Fk| < C3

for some C3. Since ∫
M

ωnk
ωn

ωn =

∫
M
ωnk =

∫
M
ωn,

we must have Fk(x) = 0 for some x ∈ M . Using Green’s formula and ∆Fk >
−C3 as we did for (2) we obtain∫

M
Fk > −C4

for some C4. Using this and ∆Fk < C3 in Green’s formula we get Fk > −C5.
Finally this bound together with the upper bound (4) implies a uniform lower
bound on the metric ωk. This, together with the curvature bound implies
C1,α-bounds on the metric ωk.

In sum we have obtained a uniform constant C such that ωk > C−1ω and
‖ωk‖C1,α(ω) < C for all k. This contradicts our assumption, and proves the
theorem.

Example 7. Note that in the 1-dimensional case I(ϕ) is simply the L2-
norm of the gradient of ϕ:

I(ϕ) =

∫
M
ϕ(−
√
−1∂∂̄ ϕ) =

∫
M

√
−1∂ϕ ∧ ∂ϕ =

∫
M
|∂ϕ|2ω ω.

We will show that in Theorem 1 one cannot replace this with an Lp norm of
the gradient for p < 2.
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Let M = P1, and ω be the Fubini–Study metric given in a coordinate chart
by

ω =
√
−1∂∂̄ log(1 + |z|2).

Let

ωλ =
√
−1∂∂̄ log(1 + |λz|2) = ω +

√
−1∂∂̄ log

λ−2 + |z|2

1 + |z|2
.

This is also the Fubini–Study metric, just in different coordinates, so
|Rm(ωλ)| < C for a constant C independent of λ. On the other hand the
metrics are not uniformly equivalent, since ωλ(0) = λ2ω(0). We will see that
nevertheless the gradients of the Kähler potentials are uniformly bounded in
Lp for any p < 2.

The Kähler potentials are

ϕλ = log(λ−2 + |z|2)− log(1 + |z|2),
and so we can compute

|∂ϕλ|2ω =
|z|2(1− λ−2)2

(λ−2 + |z|2)2
.

In polar coordinates the integral of |∂ϕλ|p with respect to ω is

2π

∫ ∞
0

rp+1(1− λ−2)p

(λ−2 + r2)p(1 + r2)2
dr.

If λ > 1, then
rp+1(1− λ−2)p

(λ−2 + r2)p(1 + r2)2
6

r1−p

(1 + r2)2
.

If p < 2, then the right hand side is integrable, so we have a uniform bound
on the Lp-norm of |∂ϕλ|.

Proof of Theorem 2. Given Theorem 1, the proof of Theorem 2 is
along standard lines, as in Chen–He [4] for instance. We outline the main
points. Crucially, the Mabuchi energy is decreasing along a solution ωt of the
Calabi flow:

d

dt
M(ωt) = −

∫
M

(S(ωt)− Ŝ)2 ωnt 6 0.

The properness assumption on the Mabuchi energy then gives a uniform bound
on I(ϕt) along the flow. This together with Theorem 1 implies that the metrics
along the flow are uniformly equivalent. At this point one can show that the
Calabi energy ∫

M
(S(ωt)− Ŝ)2 ω2

t

decays exponentially fast to zero. The smoothing property of the flow implies
uniform bounds on the derivatives of S(ωt), so from the decay of the Calabi
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energy we find that in fact S(ωt)− Ŝ → 0 in any Ck norm, exponentially fast.
This proves the exponential convergence of the flow

∂

∂t
ϕt = S(ωt)− Ŝ.

The limit is necessarily a constant scalar curvature metric in the class [ω].
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(1984), 143–153.

2. Calabi E., Extermal Kähler metrics, Seminar on Differential Geometry, pp. 259–290,
Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton N.J., 1982.

3. Chen X. X., On the lower bound of the Mabuchi energy and its application, Internat.
Math. Res. Notices, No. 12 (2000), 607–623

4. Chen X. X., He W. Y., On the Calabi flow, Amer. J. Math., 130, No. 2 (2008), 539–570.
5. Chen X. X., He W. Y., The Calabi flow on toric Fano surfaces, Math. Res. Lett., 17, No.

2 (2010), 231–241.
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