On some factorial properties of subrings
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEOn some factorial properties of subrings
Data publikacji: 24.11.2017
Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 43 - 52
https://doi.org/10.4467/20843828AM.17.004.7080Autorzy
On some factorial properties of subrings
1. Anderson D.F., Root closure in integral domains, J. Algebra, 79 (1982), 51–59.
2. Ayad M., Sur les polynˆomes f (X, Y ) tels que K [f ] est int´egralement ferm´e dans K [X, Y ], Acta Arith., 105 (2002), 9–28.
3. Belluce L.P., Di Niola A., Ferraioli A.R., Ideals of MV-semirings and MV-algebras, in: G.L. Litvinov, S.N. Sergeev (eds), Tropical and idempotent mathematics and applications, AMS, Providence, 2014.
4. Bondt M. de, Yan D., Irreducibility properties of Keller maps, Algebra Colloq., 23 (2016), 663–680.
5. Brewer J.W., Costa D.L., McCrimmon K., Seminormality and root closure in polynomial rings and algebraic curves, J. Algebra, 58 (1979), 217–226.
6. Daigle D., Locally nilpotent derivations, Lecture notes for the “September School” of Algebraic Geometry,aix1.uottawa.ca/~ddaigle/.L- ukec cin, Poland, September 2003 (unpublished),
7. Essen A. van den, Polynomial automorphisms and the Jacobian Conjecture, Birkh¨auser Verlag, Basel, 2000.
8. Freudenburg G., Algebraic theory of locally nilpotent derivations, Springer Verlag, Berlin, 2006.
9. Geroldinger A., Halter-Koch F., Non-unique factorizations, algebraic, combinatorial and analytic
theory, Chapman & Hall/CRC, Boca Raton, 2006.
10. Jędrzejewicz P., Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra, 31 (2003), 5501–5511.
11. Jędrzejewicz P., Eigenvector p-bases of rings of constants of derivations, Comm. Algebra, 36 (2008), 1500–1508.
12. Jec drzejewicz P., One-element p-bases of rings of constants of derivations, Osaka J. Math., 46 (2009), 223–234.
13. Jędrzejewicz P., A note on rings of constants of derivations in integral domains, Colloq. Math., 122 (2011), 241–245.
14. P. Jędrzejewicz , Positive characteristic analogs of closed polynomials, Cent. Eur. J. Math., 9 (2011), 50–56.
15. Jędrzejewicz P., Jacobian conditions for p-bases, Comm. Algebra, 40 (2012), 2841–2852.
16. Jędrzejewicz P., A characterization of Keller maps, J. Pure Appl. Algebra, 217 (2013), 165–171.
17. Jędrzejewicz P., Zielin´ski J., Analogs of Jacobian conditions for subrings, to appear in J. Pure Appl. Algebra, arXiv:1601.01508.
18. Nowicki A., Polynomial derivations and their rings of constants, Nicolaus Copernicus University, Torun´, 1994, www.mat.umk.pl/~anow/.
19. Nowicki A., Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra, 96 (1994), 47–55.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 43 - 52
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
On some factorial properties of subrings
On some factorial properties of subrings
Faculty of Mathematics and Computer Science Nicolaus Copernicus University Toruń
Faculty of Mathematics and Computer Science Nicolaus Copernicus University Toruń
ABB Corporate Research, Krakow
Faculty of Mathematics and Computer Science Nicolaus Copernicus University Toruń
Publikacja: 24.11.2017
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
Angielski