Measure Estimates, Harnack Inequalities and Ricci Lower Bound
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEMeasure Estimates, Harnack Inequalities and Ricci Lower Bound
Data publikacji: 30.11.2018
Universitatis Iagellonicae Acta Mathematica, 2018, Tom 55, s. 21 - 51
https://doi.org/10.4467/20843828AM.18.002.9718Autorzy
Measure Estimates, Harnack Inequalities and Ricci Lower Bound
On the Riemannian metric-measure space, we establish an Alexandrov–Bakelman–Pucci type estimate connecting the Bakry–E´ mery Ricci curvature lower bound, the modified Laplacian and the measure of certain special sets. We apply this estimate to prove the Harnack inequalities for the modified Laplacian operator (and fully non-linear operators, see the Appendix). These inequalities seem not available in the literature and our proof, based solely on the ABP estimate, does not use standard techniques.
1. Brighton K., A Liouville type theorem for smooth metric-measure spaces, Journal of Geometric Analysis, 23 (2013), Issue 2, 562–570.
2. Cabr´e X., Nondivergent elliptic equations on manifolds with nonnegative curvature, Comm. Pure Appl. Math., 50 (1997), 623–665.
3. Cabr´e X., Caffarelli L.A., Fully nonlinear elliptic equations, volume 43 of Colloquium Publications, AMS, 1995.
4. Caffarelli L.A., Interior W 2,p estimates for solutions of the Monge-Amp´ere equation, Ann. of Math., 131(1) (1990), 135–150.
5. Calabi E., An extension of Hopf ’s maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45–56.
6. Cheeger J., Gromov M., Taylor M., Finite propagation speed, kernel estimates for func- tions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Dif- ferential Geometry, 17 (1982), 15–53.
7. Cheng S.Y., Li P., Yau S.-T., On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., 103 (1981), 1021–1036.
8. Cheng S.Y., Yau S.-T., Differential equations on Riemannian manifolds and their geo- metric applications, Comm. Pure Appl. Math., 28 (1975), 333–354.
9. Han Q., Lin F., Elliptic Partial Differential Equations, Courant Lecture Notes. AMS/CIMS, 1997.
10. Kim S., Harnack inequality for nondivergent elliptic operators on Riemannian manifolds, Pacific J. Math., 213 (2) (2004), 281–293.
11. Krylov N.V., Safonov M.V., An estimate of the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245 (1979), 1820.
12. Krylov N.V., Safonov M.V., A property of the solutions of parabolic equations with mea- surable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161–175.
13. Li X.D., Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl., 84(9) (2005), 1295–1361.
14. Lott J., Some geometric properties of the Bakry-E´mery Ricci tensor, Comment. Math. Helv, 78(4) (2003), 865–883.
15. Cordero-Erausquin D., McCann R., Schmuckenschlaeger M., A Riemannian interpolation inequality a la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.
16. Petersen P., Riemaniann Geometry, Number 171 in Graduate Texts in Mathematics. Springer, New York, second edition edition, 2006.
17. Qian Z.-M., Estimates for weight volumes and applications, J. Math. Oxford Ser., 48 (1987), 235–242.
18. Savin O., Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations, 32 (2007), 557–578.
19. Varopoulos N., Hardy-littlewood theory for semigroups, J. Funct. Anal., 63 (1985), 240–260.
20. Villani C., Optimal Transport: old and new, Springer-Verlag, Berlin, 2009.
21. Wang X. D., Zhang L., Local gradient estimate for p-harmonic functions on Riemannian manifolds, Communications in Analysis and Geometry, Volume 19(4) (2011), 759–771.
22. Wang Y., Zhang X.W., Alexandrov-Bakelman-Pucci estimate on Riemannian manifolds, Advance in Mathematics, 232(1) (2013), 499–512.
23. Wei G.F. and Wylie W., Comparison geometry for the Bakry-E´mery Ricci tensor, J. Differential Geom., 83(2) (2009), 377–405.
24. Yau S.-T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201–228.
25. Zhang Xi, Liouville type theorems for p-harmonic maps, Chinese Ann. Math. Ser. A, 21(1) (2000), 95–98.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2018, Tom 55, s. 21 - 51
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Measure Estimates, Harnack Inequalities and Ricci Lower Bound
Measure Estimates, Harnack Inequalities and Ricci Lower Bound
Department of Mathematics, Columbia University, New York, NY
Department of Mathematics, University of California, Irvine
Publikacja: 30.11.2018
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1589
Liczba pobrań: 986