FAQ

Measure Estimates, Harnack Inequalities and Ricci Lower Bound

Data publikacji: 30.11.2018

Universitatis Iagellonicae Acta Mathematica, 2018, Tom 55, s. 21 - 51

https://doi.org/10.4467/20843828AM.18.002.9718

Autorzy

,
Yu Wang
Department of Mathematics, Columbia University, New York, NY
Wszystkie publikacje autora →
Xiangwen Zhang
Department of Mathematics, University of California, Irvine
Wszystkie publikacje autora →

Tytuły

Measure Estimates, Harnack Inequalities and Ricci Lower Bound

Abstrakt

On the Riemannian metric-measure  space, we establish an Alexandrov–Bakelman–Pucci type estimate connecting the Bakry–E´ mery Ricci curvature lower bound, the modified Laplacian and the measure of certain special sets. We apply this estimate to prove the Harnack inequalities for the modified Laplacian operator (and fully  non-linear operators, see  the Appendix).  These inequalities seem not available in the literature  and our proof, based solely on the ABP estimate, does not use standard techniques.

2010 Mathematics Subject Classification. 35J1558J05.

Bibliografia

1. Brighton  K.,  A  Liouville  type theorem for  smooth metric-measure spaces, Journal  of Geometric Analysis, 23 (2013), Issue 2, 562–570.

2. Cabr´e  X.,  Nondivergent elliptic  equations on  manifolds  with  nonnegative curvature, Comm. Pure Appl. Math., 50 (1997), 623–665.

3. Cabr´e  X.,  Caffarelli  L.A.,  Fully  nonlinear  elliptic  equations, volume 43 of Colloquium Publications, AMS, 1995.

4. Caffarelli  L.A.,  Interior W 2,p   estimates for  solutions of the Monge-Amp´ere  equation, Ann. of Math., 131(1)  (1990), 135–150.

5. Calabi E., An extension of Hopf ’s maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45–56.

6. Cheeger J., Gromov M., Taylor M., Finite  propagation speed, kernel estimates for func- tions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Dif- ferential Geometry, 17 (1982), 15–53.

7. Cheng S.Y., Li  P., Yau S.-T., On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., 103 (1981), 1021–1036.

8. Cheng S.Y., Yau S.-T., Differential  equations on Riemannian manifolds and their geo- metric applications, Comm. Pure Appl. Math., 28 (1975), 333–354.

9. Han  Q.,   Lin   F.,   Elliptic   Partial   Differential   Equations,  Couran Lecture  Notes. AMS/CIMS, 1997.

10. Kim S., Harnack inequality for nondivergent elliptic operators on Riemannian manifolds, Pacific J. Math., 213 (2) (2004), 281–293.

11. Krylov  N.V., Safonov M.V.,  An estimate of the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245 (1979), 1820.

12. Krylov  N.V., Safonov M.V., A property of the solutions of parabolic equations with mea- surable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161–175.

13. Li X.D.,  Liouville  theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl., 84(9) (2005), 1295–1361.

14. Lott  J., Some geometric properties of the Bakry-E´mery  Ricci  tensor, Comment. Math. Helv, 78(4) (2003), 865–883.

15. Cordero-Erausquin D., McCann R., Schmuckenschlaeger M., A Riemannian interpolation inequality a la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.

16. Petersen P., Riemaniann Geometry, Number 171 in Graduate Texts in Mathematics. Springer, New York, second edition edition, 2006.

17. Qian Z.-M.,  Estimates for  weight volumes and applications, J. Math.  Oxford  Ser., 48 (1987), 235–242.

18. Savin O., Small perturbation solutions for elliptic equations, Comm. Partial  Differential Equations, 32 (2007), 557–578.

19. Varopoulos N., Hardy-littlewood theory for semigroups, J. Funct. Anal., 63 (1985), 240–260.

20. Villani  C., Optimal Transport: old and new, Springer-Verlag, Berlin, 2009.

21. Wang X. D., Zhang L., Local gradient estimate for p-harmonic functions on Riemannian manifolds, Communications in Analysis and Geometry, Volume 19(4) (2011), 759–771.

22. Wang Y., Zhang X.W., Alexandrov-Bakelman-Pucci estimate on Riemannian manifolds, Advance in Mathematics, 232(1)  (2013), 499–512.

23. Wei G.F. and Wylie W., Comparison geometry for the Bakry-E´mery Ricci tensor, J. Differential Geom., 83(2) (2009), 377–405.

24. Yau S.-T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201–228.

25. Zhang Xi,  Liouville  type theorems for  p-harmonic maps, Chinese Ann.  Math.  Ser. A, 21(1) (2000), 95–98.

 

 

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2018, Tom 55, s. 21 - 51

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

Measure Estimates, Harnack Inequalities and Ricci Lower Bound

Polski:

Measure Estimates, Harnack Inequalities and Ricci Lower Bound

Autorzy

Department of Mathematics, Columbia University, New York, NY

Department of Mathematics, University of California, Irvine

Publikacja: 30.11.2018

Status artykułu: Otwarte __T_UNLOCK

Licencja: CC BY-NC-ND  ikona licencji

Udział procentowy autorów:

Yu Wang (Autor) - 50%
Xiangwen Zhang (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 1589

Liczba pobrań: 986

<p> Measure Estimates, Harnack Inequalities and Ricci Lower Bound</p>