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MEASURE ESTIMATES, HARNACK INEQUALITIES AND

RICCI LOWER BOUND

by Yu Wang and Xiangwen Zhang

Abstract. On the Riemannian metric-measure space, we establish an Ale-

xandrov–Bakelman–Pucci type estimate connecting the Bakry–Émery Ricci
curvature lower bound, the modified Laplacian and the measure of certain
special sets. We apply this estimate to prove the Harnack inequalities for
the modified Laplacian operator (and fully non-linear operators, see the
Appendix). These inequalities seem not available in the literature and our
proof, based solely on the ABP estimate, does not use standard techniques.

1. Introduction. The aim of this paper is to extend the Alexandrov–
Bakelman–Pucci (ABP) techniques to general Riemannian setting and use
them to study the relation between Ricci lower bound and elliptic PDEs on
Riemannian metric-measure spaces. In particular, we establish an ABP type
inequality (Theorem 1.2), which connects the measure of some specific sets –

contact sets (Definition 1.1) and the Bakry–Émery Ricci curvature. The idea
of this work is largely influenced by the remarkable papers by Cabré [2] and
Savin [18]. To illustrate the power of the ABP techniques, we shall consider,
on a smooth Riemannian metric-measure space (M , g, ν) with ν = e−V volg,
the modified Laplacian operator

∆νu = ∆u− g(∇u,∇V ),

which can also be defined in a more geometric way as L∇uν = (∆νu)ν, where L
stands for the Lie derivative. We will prove the Harnack inequalities (Theorems
1.3–1.5) for this operator under the assumption on the local lower bound of

the Bakry–Émery Ricci curvature. These results are the generalizations of the
Harnack inequalities proved by Yau and his collaborators (see [7], [8], [24]). So
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general Harnack inequalities seem to be unavailable in the literature; and does
not use standard methods, which rely on the variational structure of Laplacian
operator, in geometric analysis.

ABP techniques are of central importance in the contemporary study of
elliptic equations. However, they are not directly applicable in general Rie-
mannian settings. This is due to the fact that non-constant affine function does
not exist on general manifolds and the tangent bundles are separated from the
underlying spaces. These difficulties were resolved by Cabré [2]. In his pioneer
work, Cabré proposed to replace the linear functions by paraboloids-squared
distance functions ρ2(·, y) and consider the following special sets:

Definition 1.1. Let Ω be a bounded open domain in the Riemannian
manifold (M , g) and u ∈ C(Ω). For a given a ≥ 0 and a compact subset
E ⊂M , the contact set of opening a with vertex set E is defined by

A(a,E/Ω, u) :=

{
x ∈ Ω : inf

Ω

{
u(·) +

a

2
ρ2(·, y)

}
= u(x) +

a

2
ρ2(x, y)

for some y ∈ E
}
,

where ρ is the distance function of the metric g. We shall always denote
A(1, E/Ω, u) by A(E/Ω, u) for convenience and we call E the vertex set.

Using these two new components and replacing the gradient map ∇u with
the map

(1.1) F [u](x) := expx(∇u(x)), u ∈ C2(M),

Cabré was able to control the integral of the Laplacian ∆u (or more generally
non-divergence linear operator, see Definition 1.1 in [2]) over a sub-level set
from below by the volume of the domain (see Lemma 4.1 in [2]). Then fol-
lowing the approach of Krylov–Safonov ([11], [12]), Harnack inequalities for
non-divergence equation on Riemannian manifolds with non-negative sectional
curvature were derived from this estimate via Calderón–Zygmund decomposi-
tions. The approach in [2] was extended by Kim [10] by replacing the assump-
tion of non-negative sectional curvature by certain balanced condition on the
sectional curvatures according to the given operator L (see condition 4 and 5
in Section 1 of [10]). In particular, if one considers the Laplacian equation,
that condition reduces to the non-negativity of Ricci curvature.

Nevertheless, the power of Cabré’s approach has not been fully explored
yet. Following his approach, combined with some recent development in the
theory of optimal transport ([20] and references therein), we can extend the
ABP techniques onto a considerably more general settings. In particular, we
prove the following measure estimate formula, which resembles the Euclidean
version of ABP estimate.
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Theorem 1.2. Let (M , g, ν) be a complete Riemannian metric-measure
space of dimension n ≥ 2. Let E be a compact set in M and Ω be a bounded
open domain. Let K ∈ R and N ∈ [n,∞] be two constants. Let u ∈ C2(Ω). If
A(E/Ω, u) ⊂ Ω, then the following statements hold:

(i) If N <∞, then

RicN,ν ≥ Kg ⇒ ν[E] ≤
ˆ
A(E/Ω,u)

{
DK,N [u](x)

}N
ν(dx),

where for any x ∈ A(E/Ω, u),
(1.2)

DK,N [u](x) :=


cos(

√
K
N |∇u|) + ∆νu√

KN |∇u| sin(
√

K
N |∇u|) K|∇u| > 0,

1 + ∆νu/N K|∇u| = 0,

cosh(
√
−K
N |∇u|) + ∆νu√

−KN |∇u| sinh(
√
−K
N |∇u|) K|∇u| < 0.

(ii) If N =∞, then

Ric∞,ν ≥ Kg ⇒ ν[E] ≤
ˆ
A(E/Ω,u)

exp
{
− 1

2
K|∇u(x)|2 + ∆νu(x)

}
ν(dx).

The upshot of the above formula is that the integral is only calculated on
a special set – the contact set, and the lower bound of this integral can be
controlled. This is the essence of the Euclidean ABP estimate. Unlike the ABP
estimate in Euclidean space, the above formula does not involve infima of the
unknown function. However, we shall see this would not limit its application.

We have assumed the underlying manifold is smooth and u is C2 near
A(E/Ω, u). In fact, we only need u to be semi-concave (see Definition 16.4,
p. 429 in [20]) near A. However, to avoid heavy formulations and to better
present the main ideas, we shall stay with C2-functions. The underlying idea of
proving the above theorem is indeed contained in [2] and consists in applying
the area formula to the map F [u] defined by (1.1) on the contact set A. Here,
rather than use the direct calculation for the Jacobi determinant of F [u] given
in [2], we employ an ODE comparison estimate proposed in Chapter 14 of
[20]. Besides allowing us to establish an estimate for very general curvature
condition, this ODE estimate matches in a remarkable way the fine structure
of the contact sets (see Lemma 3.6 and Lemma 4.6).

Theorem 1.3. Let (M , g, ν) be a complete smooth Riemannian metric-
measure space. Let K ≥ 0 and N ∈ [n,∞). Let u ∈ C2(B2R) ∩ C(B2R) and
f ∈ C(B2R). Suppose

RicN,ν |B2R
≥ −Kg, ∆νu ≤ f in B2R, u ≥ 0 in B2R.
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Then

(1.3)

( 
BR/2

up0

)1/p0

≤ C0

{
inf
BR/2

u+R2

( 
B2R

|f |Nη
)1/(Nη)}

,

where p0, C0 are constants depending on
√
KR, N only. Moreover C0 = e2/p0

and η := η2R := 1 + 8R
log 2

√
K
N .

Theorem 1.4. Let (M , g, ν) be a complete smooth Riemannian metric-
measure space. Let K ≥ 0 and N ∈ [n,∞). Let u ∈ C2(B2R) ∩ C(B2R) and
f ∈ C(B2R). Suppose

RicN,ν |B2R
≥ −Kg, ∆νu ≥ f in B2R.

Then, for any p > 0

(1.4) sup
BR/2

u ≤ C1(p)

{( 
BR

(u+)p
)1/p

+R2

( 
B2R

|f |Nη
)1/(Nη)}

,

where C1(p) is a constant depending on
√
KR, N and p only.

Theorem 1.5. Let (M , g, ν) be a complete smooth Riemannian metric-
measure space. Let K ≥ 0 and N ∈ [n,∞). Let u ∈ C2(B2R) ∩ C(B2R) and
f ∈ C(B2R). Suppose

RicN,ν |B2R
≥ −Kg, ∆νu = f in B2R, u ≥ 0 in B2R.

Then

(1.5) sup
BR/2

u ≤ C2

{
inf
BR/2

u+R2

( 
B2R

|f |Nη
)1/(Nη)}

,

where C2 is a constant depending on
√
KR and N only.

Remark 1.6. In the case K = 0, the integral expressions of the right-
hand side function f reduce to the standard averaged LN -norm and constants
p0, C1, C2, η are independent of R. This agrees with the Harnack inequalities in
[2] and [10] when K = 0 and ν = volg. Increasing the exponent of integration
by a factor depending on the lower bound of Ricci curvature is necessary. This
can easily be seen from the examples in (K,N)-Hyperbolic space.

Besides proving Harnack inequalities under more general assumptions, we
provide a different presentation of Krylov–Safonov argument in proving Har-
nack inequalities. In this presentation, the Calderón–Zygmund decomposition
(used in [2]) is replaced with Vitali’s covering lemma. Though it essentially
follows the argument in [2], the argument here seems more elementary and
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transparent. It is similar to the covering argument used by Caffarelli in his
breakthrough work on real Monge–Ampére equations [4] and by Savin [18].

Harnack inequalities for divergent equations have intensively been studied
in geometric analysis. An incomplete list may start with Yau’s penetrating
work on developing a maximum principle method to prove that complete man-
ifolds with nonnegative Ricci curvature must have a Liouville property [24].
His argument was later localized in his joint paper with Cheng [8] and resulted
in a gradient estimate for a rather general class of elliptic equations. Yau’s
method has later been employed by many authors in the study of differential
equations on manifolds. In particular, L. Saloff-Coste observed that, using the
results of Varopoulos [19], optimal Sobolev inequalities on balls can easily be
obtained from the gradient estimate of Cheng–Yau. Based on these Sobolev
inequalities and following the approach in [7] and [6], he applied Moser’s iter-
ation to prove Harnack inequalities for divergent operators on manifolds with
standard Ricci curvature bounded from below, in the case when the right-hand
side f = 0. These results have also been extended to various general cases. For
example, in [21,25], the authors studied the gradient estimate for p-harmonic
function on Riemannian manifolds. Recently, Li [13] (see also [1]) followed
the main line of [8] and obtained the Harnack inequality for solutions of the
modified Laplacian equation on Riemannian metric-measure space.

The paper is organized as follows: In Section 2, we fix our notations and
conventions. In particular, we give a full list of constants involved in the later
proof. Section 3 and Section 4 are devoted to a study of the contact sets
and the Jacobi determinant of dF [u], respectively. In these two sections, we
shall see how the contact sets, the Jacobi fields and the underlying geometry
interact with one another. In Section 5, we prove the measure estimate formula
– Theorem 1.2. Section 6 and Section 7 contain some preparations for the
proof of Harnack inequalities (Theorems 1.3–1.5). Section 8 contains the main
technical lemma used in proving these theorems. In Section 9 and Section
10, the proofs of Theorems 1.3–1.5 are given. In the Appendix, we extend
the method proposed in this paper to prove the Harnack inequalities for fully-
nonlinear uniform elliptic operators on Riemannian manifolds.

2. Notations, Conventions and Constants. In order to avoid any po-
tential confusion, we first state our conventions and notations.
• Riemannian metric-measure space: In the paper, the background man-

ifold is the Riemannian metric-measure space (M , g, ν), where g is the Rie-
mannian metric on M and ν = e−V vol is a reference measure with V : M → R
a C2 function. Notice that, if V = 0, then ν is just the standard volume mea-
sure volg. n ≥ 2 is always used to denote the dimension of M .
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• Curvatures: Recall the definitions of Riemannian curvature tensor

(2.1) Riem(X,Y ) := DYDX −DXDY +D[X,Y ], X, Y ∈ TM

and of Ricci curvature

(2.2) Ricx(Z) :=
∑
i

gx(Riem(Z, ei)Z, ei), Z ∈ TxM ,

where ei is the orthogonal basis w.r.t. g. We also recall the following definition:

Definition 2.1. The Bakry–Émery Ricci curvature associated with ν
with effective dimension N ∈ [n,∞] is defined by

RicN,ν =


Ric N = n,

Ric +D2V − DV⊗DV
N−n N > n,

Ric +D2V N =∞.

Here, we assume V = 0 whenever N = n.

For the importance and the geometry of the Bakry–Émery Ricci curvature,
one may refer to [14,20,23] and the references therein.
• Cut-locus: We recall the definition of cut-points and focal points. We

follow the conventions in [20] (p. 193). Note that this convention may differ
from the one in other texts, but this will not affect the generality of this paper.

Definition 2.2. Fix x ∈ (M , g), a point y is called a cut point of x if
there is a geodesic γ(t) such that γ(0) = x and γ(tc) = y and satisfies: i) γ(t)
is minimizing for all t ∈ [0, tc) and ii) γ(tc + ε) is not minimizing for any ε > 0.

Two points x and y are said to be focal (or conjugate) if y can be written
as expx(tW ),W ∈ TxM , and the differential d|W expx(t·) is not invertible.

Given a point x ∈M , the cut-locus Cut(x) of x is the set consisting of all
cut-points and focal (conjugate) points of x.

• Contact relations: We recall the following terminology:

Definition 2.3. Let Ω be a subdomain of M . Let u and ϕ be two con-
tinuous functions defined in Ω. Let x0 ∈ Ω and U be a subset (not necessarily
open) of Ω. We say ϕ touches u from above (resp. below) at x0 in U if
ϕ(x) ≥ u(x) (resp. ϕ(x) ≤ u(x)) for all x ∈ U and ϕ(x0) = u(x0).

We say ϕ touches u from above (resp. below) at x0 if there is a neighbor-
hood U of x0 such that ϕ touches u from above (resp. below) at x0 in U .

• Convention in notations:

i) Throughout this paper, a letter C, without any subscript, represents a
pure constant greater than 1. It might change from line to line. However,
we emphasize that it does not depend on any parameter. Moreover, to
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make the proof more transparent, we shall try to use C scarcily and be
explicit.

ii) We always mean Br(x) to be the geodesic ball of radius r centered at
x. We shall omit the center x when it has no particular importance and
does not cause any confusion.

iii) Throughout the paper, integrations are performed against the measure
ν; and the distance function is denoted by ρ. The notation ρy means
the distance from a fixed point y.

• Special functions and notations: Herein below, in particular in the proof
of the main theorems, numerous parameters and functions appear. In order to
give a clear presentation, we shall use several short-hand symbols. Here, we
list these notations and some basic facts regarding them.

i) Let K ≥ 0, N ∈ [n,∞) and r > 0. We denote

(2.3) ω := 2

√
K

N
, Dr := 2Ne4r

√
NK , ηr :=

log Dr

N log 2
= 1 +

4r

log 2

√
K

N
.

Here, Dr is introduced to control the local volume doubling constants
for metric-measure spaces with Ric ≥ −K g used in later sections.

ii) Let t ∈ [0,∞), define

(2.4) H(t) := t coth(t), S(t) :=
sinh(t)

t
.

Note that H,S are differentiable and have a positive derivative for all
t > 0; H(0) = S(0) = 1 by taking limit. Moreover, S(t) ·H(t) = cosh(t).
Another useful observation here is that H(t) ≤ 1 + t for t ≥ 0.

iii) Let q ≥ 1 be a constant and f be a continuous function. We denote

(2.5) I(f,Br, q) := r2

( 
Br

|f(x)|Nq ν(dx)

)1/(Nq)

.

Properties of this integral are given in Section 7.

• Constants in the proofs: The following constants will be used frequently
in the proof of Harnack inequalities (Sections 8–10). They are fixed for the
entire paper. We also provide some rough estimates for them. Denote, for
r > 0,

(2.6) α := NH(rω), µ :=

[
4 α2(18)α+3N cosh(rω)

]−N
D−4

2r , M := 2α2(18)α.

where ω and Dr are the constants introduced in (2.3). Note that, by the
definition of H, we can estimate α as

(2.7) N ≤ α ≤ N + 2r
√
KN.
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We also introduce

p0 =
log e

[1+(e−1)(1−µ)]

logM

and

(2.8) δ0 :=

(
2D

4/N
2r · S(ωr)

)−1

, C3 := 4D2r

(
Mp0

µ

)1/N

, p1 := p0/(Nηr).

The following lemma is easy to check.

Lemma 2.4. D2r
M

µ1/p0
( 4
C3

)Nηr/p0 < 1; and there exists a pure constant

C independent of any parameter such that µ, δ0, 1/M are all greater than

e−C(r
√
KN+N2).

Proof. The first claim follows directly from the definition of C3 and the
fact that ηr > 1. More precisely, using the definition of C3, we compute

D2r
M

µ1/p0

(
4

C3

)Nηr/p0
= D

1−Nηr
p0

2r ·
(

M

µ1/p0

)1−ηr
< D

1−Nηr
p0

2r

since ηr > 1 and M
µ1/p0

> 1 by the definition of M and µ. Next, we note that

D2r > 1 and Nηr > p0. Then, the first claim follows.
The second claim can be proved directly by using (2.7).

Now we shall give explicit forms of C0, C1(p0), C2 in the statement of The-
orems 1.3–1.5. In later proofs, it will be clear that it suffices to choose such
constants. We shall also give some rough estimates for these constants.

Lemma 2.5. Define C0, C1(p0), C2 as follows

(2.9) C0 := e2/p0 , C2 = C1(p0) :=

(
3C3

∞∑
k=0

1

(1 + 1/M)kp1

)1/p1 1

δ0
,

where p1 and δ0 are constants given in (2.8). Then, the following statements
hold

i) 1 + (Mp0 − 1)
∑∞

k=0(Mp0(1− µ))k = e;

ii) e1/p0 ≥ δ0 ≥ 1;
iii) The constants p0, C0, C1(p0), C2 satisfy

p0 ≥
µ

4 logM
≥ e−C(r

√
KN+N2), max{C0, C2} ≤ exp

[
eC(r

√
KN+N2)

]
.

Proof. i) can be verified directly. To show ii), note the relation x
e ≤

1− log[e− x] ≤ x
e−1 , we have then 1

p0
≥ logM/µ. By the choice of M,µ, δ0, it

is clear that ii) holds.
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To prove iii), use the previous inequality of log, it is then easy to show p0

satisfies the required estimate. Finally, denote b := ((M + 1)/M)p1 , then it is
easy to check

∞∑
k=0

(
M

M + 1

)p1k
=

1

2
+

1

2
coth

[
1

2
log(b)

]
=

1

2
+ (log b)−1H

(
1

2
log(b)

)
≤ 1 +

1

p1 · log(1 + 1/M)
.

Next, we notice that x−1
e−1 ≤ log x for x ∈ (1, e). It follows that

log(1 + 1/M) ≥ 1/M

e− 1
.

Therefore,
∞∑
k=0

(
M

M + 1

)p1k
≤ 1 +

(e− 1)M

p1
<

3M

p1
.

Then, we can then easily estimate C2 = C1(p0) as stated.

3. Contact Set. In this section, we investigate some properties of the
contact set (recall Definition 1.1), in particular the behavior of the unknown
function u on its associated contact set. We will see that the contact set
recognizes the underlying metric geometry in an elegant way. First, we provide
an alternative characterization of the contact set, given in [2].

Definition 3.1. The concave paraboloid Pa,y with vertex y and opening
a is a function of the form

Pa,y := −a
2
ρ2(x, y) + cy, cy, a ∈ R, a ≥ 0.

Similarly, one can define the convex paraboloid.

Proposition 3.2. Let Ω ⊂ M be a bounded domain and u ∈ C(Ω). As-
sume that E ⊂ Ω is closed and a ≥ 0. Then x ∈ A(a,E/Ω, u) if and only
if there exists a concave paraboloid Pa,y of opening a and vertex y ∈ E that

touches u in Ω from below.

Proof. It immediately follows from the definitions (Definition 1.1, Defi-
nition 2.3 and Definition 3.1).

The following proposition contains some basic properties of the contact set
(see [18]). Its proof is a routine check and hence is omitted.

Lemma 3.3. Let Ω ⊂M be a bounded domain and u ∈ C(Ω). Assume that
E ⊂M is a compact subset, then

a) For all a ≥ 0, A(a,E/Ω, u) is closed (hence ν-measurable).
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b) If uk ∈ C(Ω) and uk → u uniformly in Ω, then

lim sup
k→∞

A(a,E/Ω, uk) =
∞⋂
j=1

⋃
k≥j

A(a,E/Ω, uk) ⊂ A(a,E/Ω, u).

c) If ak → 0, then

lim sup
k→∞

A(ak, E/Ω, u) =

∞⋂
j=1

⋃
k≥j

A(ak, E/Ω, u) ⊂ A(0, E/Ω, u).

d) If E ⊂ F , then

A(a,E/Ω, u) ⊂ A(a, F/Ω, u).

To examine the interaction between contact sets and the underlying metric
geometry, we shall need the following notion and proposition from standard
Riemannian geometry. We first recall the hessian bound in support sense
introduced in [5] (also see [16]).

Definition 3.4. Let w ∈ C(Ω). We say D2w ≥ βg, β ∈ R, in support
sense at x0 if for every ε > 0 there exists a smooth function ϕε defined in a
neighborhood of x0 such that

i) ϕε touches w from below at x0;
ii) D2ϕε(x0) ≥ (β − ε)g(x0).

Similarly, one can define D2w ≤ βg in support sense.

We remark that the condition ii) in the above definition is different from
the definition of viscosity solution in PDE. The following well-known property
of the distance function (see [16], p. 342) will be used in our proof.

Proposition 3.5. Let (M , g) be a smooth Riemannian manifold. Given
any y ∈M , denote the distance function starting from y by ρy(·). Then ∇2ρ2

y

is locally bounded above in support sense, that is, for any compact set Z, there
exists a constant Q (depending on diam(Z) and the sectional curvature lower
bound over Z), such that D2ρ2

y(x) ≤ Q g for any x ∈ Z in support sense.

The following lemma contains a key property of contact sets.

Lemma 3.6. Let u ∈ C(Ω) and E ⊂ Ω be closed. Let a > 0. Suppose
A(a,E/Ω, u) ⊂ Ω and u is locally bounded above in support sense in Ω. Then
the following statement holds: if y ∈ E and the paraboloid Pa,y touches u at
x ∈ A(a,E/Ω, u) from below, then x and y are neither cut-points nor focal
points for each other and hence Pa,y is smooth at x.

Proof. From Proposition 3.5, we know that a
2ρ

2
y(x) is locally bounded

from above in the support sense and therefore Pa,y is locally bounded from
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below in the support sense. On the other hand, we assume that u is locally
bounded above in support sense and Pa,y touches u from below at x; therefore
Pa,y is locally bounded from above in the support sense. Therefore, by the
definition of boundedness in support sense, there are two smooth functions
ϕ+, ϕ− such that ϕ+ touches Pa,y from above at x and ϕ− touches it from
below at x. It follows immediately that Pa,y is differentiable at x. By the
standard Riemannian geometry, x and y are not cut-points of each other.

To show x, y are not focal points to each other, we consider the limit of the
second order increment quotient

∆2Pa,y(x) := lim sup
|W |→0

Pa,y(expxW ) + Pa,y(expx(−W ))− 2Pa,y(x)

|W |2
.

The existence of ϕ+, ϕ− shows that |∆2Pa,y(x)| < ∞. By Proposition 2.5 in
[15], this eliminates the possibility that x, y are focal points to each other.

Next lemma relates contact sets, the sub-level sets of u and the domain.
Such a statement has indeed been used in [2].

Lemma 3.7. Let u ∈ C(Br(x0)). Suppose u(y0) = ` for some y0 ∈ Br/2(x0)
and u ≥ t in Br(x0) \B5r/6(x0). If ` < t, then for any a > 0

A(a,Br/6(y0)/Br(x0), u) ⊂ B5r/6(x0) ∩ {u ≤ `+
ar2

36
}.

Proof. Let Pa,z be a polynomial touching u at x1 for some z ∈ Br/6(y0).
By the contact relation, we have

(3.1) u(y0) ≥ Pa,z(y0) = −a
2
ρ2(y0, z) +

a

2
ρ2(x1, z) + u(x1).

Thus, we immediately have

u(x1) ≤ Pa,z(y0) +
a

2
ρ2(y0, z) ≤ `+

ar2

36
.

Therefore, it suffices to show x1 ∈ B5r/6(x0). Suppose on the contrary that
x1 ∈ Br(x0) \ B5r/6(x0). Then, by y0 ∈ Br/2(x0) and z ∈ Br/6(y0), we know

ρ(x1, z) ≥ r
6 . Thus ρ2(x1, z)− ρ2(y0, z) ≥ 0. However, (3.1) implies

(3.2)
a

2

(
ρ2(x1, z)− ρ2(y0, z)

)
≤ u(y0)− u(x1) ≤ `− t < 0.

This is a contradiction.

Remark 3.8. While sufficient for the purposes of this paper, this is not
the most precise relation between contact sets and sub-level sets. However,
the proof of above lemma suggests how one could control the relative position
of contact sets, sub-level sets and domain. On space with a special feature in
metric geometry, such as Euclidean space where the parallelogram law holds,
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very precise relation can be drawn regarding the relative location of contact
sets with different opening (see [18]).

4. Jacobi Equation and Jacobi Determinant. In this section, we
quote, after [20], some important results regarding the Jacobi equation and
its geometrical implications. They are of fundamental importance in devel-
oping our ideas. In particular, we shall see how the contact sets match with
the Jacobi determinant (Proposition 4.6). The content of this section follows
closely Chapter 14 (pp. 365–372 and 379–383) in [20] and its third Appendix
(pp. 412–418). In the sequel, we shall always assume the time interval to be
[0, 1].

Definition 4.1. Let R : t→ R(t) be a continuous map defined on [0, 1],
valued in the space of n×n symmetric matrices. The Jacobi equation associated
to R(t) is the following ODE

(4.1) J̈(t) +R(t) · J(t) = 0.

for a time-dependent matrix J : t → J(t). Such a solution J will be called a
Jacobi matrix.

The following propositions contain the main properties of the Jacobi equa-
tion which support our reasoning (see pp. 429–432 in [20] for a proof).

Proposition 4.2. Let J1
0 and J0

1 be Jacobi matrices defined by the initial
conditions

J1
0 = J̇0

1 = I, J̇1
0 = J0

1 = 0.

Assume J0
1 is invertible for all t ∈ (0, 1]. Then S(t) := [J0

1 (t)]−1J1
0 (t) is sym-

metric for all t ∈ (0, 1], and it is a decreasing function of t, that is 〈S(t)w,w〉
is decreasing for any vector w.

Remark 4.3. The original statement in the book [20] also states that S(t)
is positive for all t ∈ [0, 1). We have confirmed with the author that the latter
statement is merely a typo. Indeed, the material in the third Appendix to
Chapter 14 in [20] does not rely on positivity of S(t).

Proposition 4.4. Let S(t) be the matrix defined in Proposition 4.2. Let
J(t) be a Jacobi matrix satisfying the initial conditions

J(0) = I, J̇(0) is symmetric

Then, J̇(0) + S(1) ≥ 0 if and only if det J(t) > 0 for all t ∈ [0, 1).

Now, we relate the above pure ODE results to some geometry of Jacobi
fields on Riemannian manifolds. The following discussion follows closely [20].
Let (M , g) be a Riemannian manifold. Given a geodesic γ(t), one may par-
allelly transport an orthonormal frame e(0) at Tγ(0)M along γ(t) to obtain
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a frame e(t) at Tγ(t)M . Then, a family of sections H(t) ∈ SymTγ(t)M can
be canonically identified with a family of symmetric matrices parametrized by
t. In the rest of this paper, we shall always use this identification whenever
necessary. The eigenvalues of H(t) are independent of choice of the frame e(t).
Consider the flow F [u](t, ·) defined as follows:

Definition 4.5. Let u ∈ C2(Ω). Define

F [u](t, ·) : Ω→M , x 7→ expx(t∇u(x)).

For our convenience, we shall denote F [u] = F [u](1, ·); and the symbols Ft[u]
and F [u](t, ·) will be used interchangeably. We also denote the Jacobi trans-
formation dF [u] by J [u].

The next proposition contains some geometric implications of the previous
two propositions (see the discussion on pp. 413–414 in [20]).

Proposition 4.6. Let x, y ∈ M . Suppose x, y are neither cut-points nor
focal points to each other. Then the following statements hold:

i) J [u](t, x) is a smooth (w.r.t. time t) Jacobi matrix associated to

Rij(t, x) = Riem(γ̇(t, x), ei(t), γ̇(t, x), ej(t))

with initial conditions J(0, x) = I, J̇(0, x) = ∇2u(x) along the curve
γ[u](t, x) := expx(t∇u(x)).

ii) if ∇2u(x) +∇2(1
2ρ

2
y)(x) ≥ 0, then, det J [u](t, x) ≥ 0 for all t ∈ [0, 1]. In

particular, det J [u](t, x) > 0 for all t ∈ [0, 1).

Proof. The proof is contained in Chapter 14 of [20]. See the discussion
on pp. 365–367 for i) and pp. 412–418 for ii).

Up to now, we have not yet considered the reference measure. Next, we
will estimate the Jacobi determinant of F [u] with respect to reference measure
ν. For results and their proofs, see Chapter 14 in [20]. Jacobi equation (4.1)
immediately suggests that behavior of J [u](t) is controlled by curvatures and
the Hessian of u. However, we are only interested in estimating the Jacobi
determinant, which can indeed be controlled by the Ricci curvature. First, we
introduce a couple of definitions and notations.

Definition 4.7. Let (M , g, ν) be a complete Riemannian metric-measure
space and Ω ⊂M be a domain. Let u ∈ C2(Ω). We denote

J [u](t;x) := det (J [u](t, x))

for any x ∈ Ω, and define

Jν [u](t, x) := lim
r→0

ν [Ft[u](Br(x))]

ν[Br(x)]
=
e−V (Ft[u](x))

e−V (x)
J [u](t, x), ∀x ∈ Ω.
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We also denote

DN [u](t, x) =

{
(Jν [u](t, x))1/N n ≤ N <∞,
logJν [u](t, x) N =∞.

The following proposition from Chapter 14 of [20] provides an estimate for
Jν [u].

Corollary 4.8. Let u ∈ C2(Ω). Let x ∈ Ω and γ(t, x) be a geodesic
starting at x with γ̇(t, x) = ∇u(x). Suppose J [u](t, x) is invertible for all
t ∈ [0, 1). Then, for any N ∈ [n,∞],

D̈N [u](t, x) ≤

{
− 1
N RicN,ν(γ̇(t, x))DN [u](t, x) n ≤ N <∞,
−Ric∞,ν(γ̇(t, x)) N =∞,

∀t ∈ (0, 1)

Proof. See pp. 379–383 in [20].

Remark 4.9. D∞ = −l(t), where l(t) is defined in [20].

5. Measure Estimate. In this section, we give a proof of Theorem 1.2.
Indeed, all the technical work has been done in the previous two sections.

Proof of Theorem 1.2. To simplify the notation, we write A =
A(E/Ω, u) ⊂ Ω in the proof. First, we show that the map F [u](x) = F [u](1, x)
is a subjective map from A onto E. Fix a point y ∈ E, by definition, there
exists a paraboloid Pa,y touches u at some x ∈ A. By Lemma 3.6, we know
that Pa,y is smooth at x and the contact condition implies

(5.1) ∇u(x) = −ρy(x)∇ρy(x).

Hence, F [u](1, x) = expx[−ρy∇ρy(x)] = y. This proves the subjectivity.
Next, as indicated by Lemma 3.6, x and y are neither cut-points nor con-

jugate points of each other, Proposition 4.6 together with the contact relation

∇2u(x) ≥ −∇2

(
1

2
ρ2
y(x)

)
implies that J [u](t, x) is invertible for all t ∈ (0, 1) and Jν(t, x) ≥ 0 for all t ∈
[0, 1]. Therefore, DN (recall Definition 4.7) satisfies the differential inequality
given in Corollary 4.8. Denote γ(t, x) = expx(t∇u(x)). By (5.1) and the fact
that γ is a geodesic, we have

|γ̇(t, x)|2 = |γ̇(0, x)|2 = |∇u(x)|2, ∀t ∈ [0, 1].

Combining this with the Ricci lower lower bound condition, the differential
inequalities in Corollary 4.8 reduce to

(5.2) D̈N [u](t, x) ≤

{
−(K/N)|∇u(x)|2 DN [u](t, x) n ≤ N <∞,
−K|∇u(x)|2 N =∞.
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Now, applying a standard ODE comparison argument with the initial condition

DN [u](0, x) =

{
1 n ≤ N<∞
0 N =∞

and ḊN [u](0, x) =

{
1
N∆νu(x) n ≤ N<∞
∆νu(x) N =∞

we obtain, for all x ∈ A,

(5.3) DN [u](1, x) ≤

{
DK,N [u](x) N ∈ [0,∞),

−1
2K|∇u(x)|2 + ∆νu(x) N =∞.

where DK,N [u] is given in (1.2). Finally, since u is C2 in Ω containing A and
hence F [u/a](1, ·) is differentiable in Ω, we may apply the area formula to
obtain

ν[E] ≤
ˆ
A
Jν(x) ν(dx)

≤

{´
A [DN [u](x)]N ν(dx) n ≤ N <∞,´
A exp

[
−1

2K|∇u(x)|2 + ∆νu(x)
]
ν(dx) N =∞.

Here we used the fact that Jν ≥ 0. The required formula follows from (5.3).

Remark 5.1. Just two inequalities were used in the above proof. One in
the application of area formula. It becomes equality if and only if F [u] is one-
to-one. The other one is the estimate by the ODE comparison. Differential
inequality (5.2) is equivalent to the Ricci lower bounded (see details on p. 400,
Proposition 14.8 in [20]). These two inequalities can simultaneously become
equalities.

Remark 5.2. The formula given by Theorem 1.2 is, in certain sense, a dual
formula to the Sobolev inequalities. In particular, the case N = ∞ could be
viewed as a dual formula for the log-Sobolev inequality. One way to recognize
this duality is to consider the key ingredients in the proof of Theorem 1.2 and
the proof of Sobolev inequalities. It is known that Sobolev inequalities can
be derived as a consequence of co-area formula, while Theorem 1.2 is proved
based on the area formula.

In the rest of this paper, we will not explore the full power of the above
estimate. The following corollary will suffice to prove Harnack inequalities.

Corollary 5.3. Let (M , g, ν) be a complete Riemannian metric-measure
space of dimension n ≥ 2. Let E be a closed subset of a geodesic ball Br and
u ∈ C(Br). Let K ≥ 0 and N ∈ [n,∞) be two constants.

Suppose a > 0 and A(a,E/Br, u) ⊂ Br, and assume that there exists a
subdomain Ω′ containing A(a,E/Br, u) such that u ∈ C2(Ω′). Then we have

RicN,ν |Br ≥ −Kg ⇒ ν[E] ≤
ˆ
A(a,E/Br,u)

{
DK,N,r[u/a](x)

}N
ν(dx),
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where for any x ∈ A(a,E/Ω, u),

DK,N,r[u/a](x) :=
sinh(rω)

rω

[
rω coth(rω) +

∆νu(x)

Na

]
,

where ω = 2
√

K
N is defined in (2.3). Moreover, in the case K = 0, expressions

are understood as their obvious limits.

Proof. Apply the proof of Theorem 1.2 to the function 1
au(x) and observe

that at a contact point x ∈ A(a,E/Br, u), we have

1

a
∇u(x) = −ρy(x)∇ρy(x).

It follows from A(a,E/Br, u) ∪ E ⊂ Br that

1

a
|∇u(x)| = |ρy(x)| ≤ 2r, ∀x ∈ A.

The proof is then completed by substituting this estimate to the ODE estimate.

6. Ricci Comparison and A Barrier. In this section, we recall the
Ricci comparison theorem for the modified Laplacian operator and use it to
construct a barrier function which will be used later (proof of Lemma 9.3).
Recall the following result from [17] (or [13], [23]).

Proposition 6.1. Suppose RicN,ν |BR ≥ −Kg,K ≥ 0, N ∈ [0,∞). Then
for any two points x, y ∈ BR, we have

∆νρy(x) ≤ (N − 1)
H
(

2
√

K
N−1 ρy(x)

)
ρy(x)

in the support sense everywhere (recall notation 2.4 from Section 2).

Remark 6.2. Note that it is easy to check

1 + (N − 1)H

(
2

√
K

N − 1
ρ

)
≤ NH

(
2

√
K

N
ρ

)
.

Therefore, we have

∆ν

ρ2
y

2
(x) ≤ NH(ω ρy(x)).

The rest of this section is devoted to the construction of a barrier func-
tion. A similar construction was given in [2] (also adopted in [10]). However,
as working with potentially negative curvature, one needs more detailed in-
formation on such a barrier function to ensure that the constants depend on
curvatures in a proper way (in particular, this is necessary in studying elliptic
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fully-nonlinear PDEs). This information is provided in the following lemmas.
Their proofs are technical but completely routine. Recall the definition of the
constant α from Section 2. Note that α ≥ 2.

Lemma 6.3. There exists a function h : [0,∞)→ R such that

i) h ∈ C2[0,∞) and h′(0) = 0;
ii) inf [0,∞) h ≥ −α2(18)α;
iii) The derivatives of h satisfy the following estimates:

(a) for t > 1/18,

h′′(t)− h′(t)

t
= −α(α+ 2)t−(α+2) < 0,

h′(t)

t
= αt−(α+2) > 0;

(b) for 0 ≤ t ≤ 1/18,∣∣∣∣h′′(t)− h′(t)

t

∣∣∣∣ ≤ 2α2(18)α+3, 0 <
h′(t)

t
≤ 500 α2(18)α.

Proof. Let βi, i = 0, 1, 2 be constants to be determined. Consider the
function

h(t) :=

{
β0 + β1t

2 + β2t
4 t ≤ 1

18

(1/18)−α − t−α t > 1
18 .

By choosing

β0 = −2(−3+α)9α(6α+ α2),

β1 = 2α9(2+α)(4α+ α2),

β2 = −2(1+α)9(4+α)(2α+ α2),

(6.1)

we match up the values of the first two derivatives of h at t = 1/18. It is easy
to check h has all the required properties.

Lemma 6.4. Let (M , g, ν) be a complete Riemannian metric-measure space.
Fix a geodesic ball Br(x0) with r ≤ R. Let K ≥ 0 and 1 < N < ∞. Suppose
that RicN,ν |Br(x0) ≥ −Kg. Then there exists a function ψ such that

i) ψ is continuous in Br(x0) and lies in C2 (Br(x0) \ Cut(x0));
ii) infBr(x0)) ψ ≥ −α2(18)α and

ψ ≥ (18)α − (4/3)α in Br(x0) \B3r/4(x0), ψ = (18)α − 2α on ∂Br/2(x0);

iii) ψ is locally bounded above in support sense in Br(x0);
iv) in Br/18(x0) \ Cut(x0),

r2∆νψ

N
+H(ωr) ≤ 2α3(18)α+3;
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v) in Br(x0) \
(
Br/18(x0) ∪ Cut(x0)

)
r2∆νψ

N
+H(ωr) ≤ 0.

Here, the constants ω and α are defined as in Section 2.

Proof. Take h(t) to be the function given in Lemma 6.3 with α as given
in (2.6). Denote ρx0 by ρ for convenience. Define

ψ := h(ρ/r).

It is routine to check that ψ has all the required properties by Lemma 6.3 and
Proposition 6.1.

7. Measure Doubling and Monotonicity of IK,N . In this section, we
summarize some results about the measure doubling property, the integration
I(f,Br, q) (defined in Section 2) and some basic Lp theory which will be used
in the proof of Harnack inequalities (Theorems 1.3–1.5). First, we recall the
doubling property (see Definition 18.1 in [20]).

Definition 7.1. Let (M, g, ν) be a metric measure space. The measure
ν is said to be doubling if there exists a constant D such that

ν [B2r(x)] ≤ D ν [Br(x)] for any x ∈M and r > 0.

The measure ν is said to be locally doubling if for any fixed closed ball BR(x) ⊂
M, there is a constant D = D(x,R) such that

ν [B2r(x)] ≤ D ν [Br(x)] for any x ∈ BR(x) and r ∈ (0, R).

The following proposition provides estimates for the doubling constant on
a Riemannian metric-measure space in terms of Ricci lower bound (Corollary
18.11 in [20]).

Proposition 7.2. Let (M , g, ν) be a Riemannian metric-measure space
satisfying the curvature condition RicN,ν ≥ −K g for some K ≥ 0 and 1 <
N <∞. Then ν is doubling with a constant which is:

• uniform and less or equal to 2N if K = 0;

• locally uniform and less or equal to 2N
[

cosh
(

2
√

K
N−1R

)]N−1
for any

BR, if K > 0.

Recall the definition of the constants Dr and ηr given by (2.3) in Section
2. We see that

2N
[

cosh
(

2

√
K

N − 1
R
)]N−1

≤ DR.
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Moreover, the doubling property allows the following simple estimate

(7.1)
ν[Br1(x)]

ν[Br2(x)]
≤ DR ·

(
r1

r2

)N ηR

providing Br2(x) ⊂ Br1(x) ⊂ BR on (M , g, ν) with RicN,ν |BR ≥ −Kg.
Recall the definition of I(f ;Br, q) (2.5) from Section 2. The integral

I(f ;Br, q) has good monotonicity property and fits the scaling well.

Lemma 7.3. For any 1 < N <∞, we have

i) I(f ;Br, t) ≤ I(f ;Br, s) whenever t < s.
ii) If Br1(x) ⊂ Br2(x) ⊂ BR, then I(f ;Br1(x), ηR) ≤ I(f ;Br2(x), ηR).

Proof. i) follows from the standard Lp theory; ii) follows from direct
calculation and (7.1).

Given a function f on the domain Ω with finite measure, we define

(7.2) λ̃Ω(t) :=
ν[{f ≥ t} ∩ Ω]

ν[Ω]
.

When no confusion could arise, we shall omit the subscript. We shall need the
following well-known statement in Lp-theory (see [3] for instance).

Lemma 7.4. Let C > 1. Then, for any 0 < p <∞,
 

Ω
fp <∞⇔ S :=

∞∑
k=0

Cpkλ̃(Ck) <∞

and

(1− 1

Cp
)S +

1

Cp
λ̃(1) ≤

 
Ω
fp ≤ 1 + (Cp − 1)S.

8. Proof of Harnack Inequalities I. In this section, we establish the
key lemma for the proof of Harnack inequalities (Theorems 1.3–1.5). It de-
scribes the local growth of the solution u. A similar lemma was used in [2].
Our proof is essentially the same as that in [2] (also in [10]). However, by
using some fine properties of the contact sets, we avoid the approximation pro-
cedures required in [2] and [10]. Recall from Section 2 the constants M,µ, δ0

(2.6, 2.8), the function H(t),S(t) (2.4) in Section 2 and integral I(f ;Br, q)
(2.5).

Lemma 8.1. Let (M , g, ν) be a complete metric-measure space. Let u ∈
C(B2R) ∩ C2(B2R) and f ∈ C(B2R). Let K ≥ 0, N <∞. Suppose that

RicN,ν |B2R
≥ −Kg, I(f,B2R, 1) ≤ δ0.
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Then, for any given ball B2r(x0) ⊂ B2R,

u ≥ 0 in Br(x0), inf
Br/2(x0)

u ≤ 1, ∆νu ≤ f in Br(x0),

implies

(8.1)
ν[{u ≤M}

⋂
Br/18(x0)]

ν[Br(x0)]
≥ µ,

where M and µ are uniform constants defined by (2.6) in Section 2.

Proof. Let ψ be the function constructed in Lemma 6.4 with respect to
Br(x0). Consider w = u + ψ on Br(x0). By the construction of ψ and the
assumptions on u, there exists y0 ∈ Br/2(x0) such that

w(y0) = inf
Br/2(x0)

w ≤ 1 + (18)α − 2α,

and w satisfies
inf

Br(x0)\B3r/4(x0)
w ≥ (18)α − (4/3)α.

These two conditions together with Lemma 3.7 and α ≥ N ≥ 2 (2.7) imply

(8.2) A
( 1

r2
, Br/6(y0)/Br(x0), w

)
⊂⊂ Br(x0)

⋂
{w ≤ 1 + (18)α − 2α +

1

36
}.

To simplify the notation in the rest of the proof, we denote

A := A
( 1

r2
, Br/6(y0)/Br(x0), w

)
,

By ii) of Lemma 6.4, we obtain

w = u+ ψ ≤ 37

36
+ (18)α − 2α ⇒ u ≤ 2α2(18)α.

This along with (8.2) and the definition of M (2.6) implies

(8.3) ν[A ∩Br/18(x0)] ≤ ν[{u < M} ∩Br/18(x0)].

Hence, it suffices to estimate ν[A ∩Br/18(x0)] from below.

By Lemma 6.4, ψ is locally bounded above in support sense. Since u is C2,
w is locally bounded from both above and below on A in the support sense.
This implies

A ∩ Cut(x0) = ∅
because ψ, and hence w, are not bounded below in support sense on Cut(x0).
We also note that A is closed (Lemma 3.3) and Cut(x0) is also closed. There-
fore, there is a neighborhood Ω′ ⊂ Br/4(y0) of A such that w ∈ C2(Ω′). Then,
we apply Corollary 5.3 to obtain

(8.4) ν[Br/6(y0)] ≤
ˆ
A

{
DK,N,r[r2w](x)

}N
ν(dx)
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with DK,N,r[r2w](x) = S(ωr)

[
H(ωr) + r2∆νw(x)

N

]
.

Next, we estimate DK,N,r[r2w]. First, Lemma 6.4 together with ∆νu ≤ f

implies that, for any x ∈ A ∩Br/18(x0),

(8.5) DK,N,r[r2w](x) ≤ 2α3(18)α+3S(ωr) + S(ωr)

(
r2f+(x)

N

)
;

and for any x ∈ A ∩ (Br(x0) \Br/18(x0)),

(8.6) DK,N,r[r2w](x) ≤ S(ωr)

(
r2f+(x)

N

)
.

Here, f+ = max{f, 0}. These estimates along with the simple relation

(t+ s)N =
(
(t+ s)+

)N ≤ 2N−1
[(
t+
)N

+
(
s+
)N]

for t+ s > 0,

imply

ˆ
A

{
DK,N,r[r2w](x)

}N
ν(dx) ≤ 1

2

[
4 α2(18)α+3N cosh(ωR)

]N
ν[A ∩Br/18(x0)]

+ 2N−1SN (ωr)

ˆ
Br(x0)

(
r2f+(x)

N

)N
.

(8.7)

Combining this estimate with (8.4), we obtain

1 ≤ 1

2

[
4 α2(18)α+3N cosh(ωR)

]N
ν[A ∩Br/18(x0)]/ν[Br/6(y0)]

+ 2N−1SN (ωr)
1

ν[Br/6(y0)]

ˆ
Br(x0)

(
r2f+(x)

N

)N
.

(8.8)

By the doubling property, we have

(8.9) ν[Br(x0)] ≤ ν[B3r/2(y0)] ≤ D4
2Rν[Br/6(x0)].

Applying monotonicity of the integral I (Lemma 7.3), we obtain

1

ν[Br/6(y0)]

ˆ
Br(x0)

(
r2f+(x)

N

)N
≤ D4

2R

 
Br(x0)

(
r2f+(x)

N

)N
≤ D4

2Rδ
N
0 .(8.10)

Combining (8.8) with (8.10) and recalling the choice of δ0 (2.8), we obtain

4 α2(18)α+3N cosh(2ωR)]N D4
2R

ν[A ∩Br/18(x0)]

ν[Br(x0)]
≥ 1.
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Recalling the definition of µ (2.6), we then have

(8.11)
ν[A ∩Br/18(x0)]

ν[Br(x0)]
≥
[
4α2(18)α+3N cosh(ωR)

]−N
D−4

2R ≥ µ.

The proof is completed by combining the above inequality with (8.3).

9. Proof of Harnack Inequalities II. In this section, we give a proof
of Theorem 1.3. The idea here is essentially the same as in [2], which goes
back to [11] and [12]. Our presentation here follows [18]. First, we recall
the following version of Vitali’s covering lemma. One may refer to a standard
textbook in measure theory for a proof.

Lemma 9.1. Let (X, ρ, ν) be a metric-measure space. Let V be a family of
closed balls of nonzero radius in X and D be the collection of centers of these
balls. Suppose that

sup{diam(B) : B ∈ V} <∞
and ν satisfies the local measure doubling property, that is, for any compact set
Z, ν has a doubling constant depending on Z. Then there exists a countable
sub-collection V ′ of V such that

D ⊂
⋃
B∈V ′

B

and the collection {1
4B : B ∈ V ′} is disjoint.

Recall the definitions of the constants M , µ, δ0 and the integral I(f ;Br, q)
from Section 2. Theorem 1.3 follows immediately from the following two lem-
mas.

Lemma 9.2. Under the assumptions of Theorem 1.3, denote by Dk the set

Dk := {x ∈ BR/2 : u(x) ≤Mk}.
Suppose additionally that

inf
BR/2

u ≤ 1 and I(f,B2R, η2R) ≤ δ0.

Then, for any k ≥ 0

ν[Dk+1 ∩Brx/4(x)] ≥ µ ν[Brx(x)]

for all x ∈ BR/2 \Dk and rx = dist(x,Dk).

Proof. Fix x0 ∈ BR/2 \Dk. In the rest of the proof, we write r0 = rx0 =
dist(x0, Dk) for convenience. Since D0 6= ∅, we have r0 ≤ R/2. Let z0 denote
the center of B2R. Connect x0 and z0 by a minimizing geodesic. Choose y0

be a point on this geodesic such that ρ(y0, x0) = r0/8 and consider the ball
Br0/8(y0).
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As γ is minimizing, we have ρ(y0, z0) + ρ(y0, x0) = ρ(z0, x0). Then, by
triangle inequality and the estimate r0 ≤ R/2, we have

Br0/8(y0) ⊂ Br0/4(x0) ∩BR/2.
Therefore

(9.1) Br0/4(x0) ∩Dk+1 ⊃ Br0/8(y0) ∩ {w ≤M},

where w = u/Mk. Thus, it suffices to estimate ν[Br0/8(y0) ∩ {w ≤ M}] from
below.

Consider the ball Bl(y0) with l = 9
4r0. First, as r0 < R/2, we have l ≤ 9

8R
and by triangle inequality B2l(y0) ⊂ B2R. Second, since

dist(y0, Dk) ≤ ρ(x0, y0) + dist(x0, Dk) ≤
9

8
r0,

we have Bl/2 ∩Dk 6= ∅. Third, noticing that l
18 = r0

8 , we obtain

Bl/18(y0) ∩ {w ≤M} = Br0/8(y0) ∩ {w ≤M}.
With these three elementary relations, we may apply the Lemma 8.1 to w

on Bl(y0) and obtain

(9.2) ν[Br0/8 ∩ {w ≤M}] ≥ µν[Bl(y0)] ≥ µν[Br0(y0)].

Here the last inequality follows from the fact that

Bl(y0) = B9r0/4(y0) ⊃ Br0(x0).

Combining (9.1) and (9.2), we complete the proof.

Lemma 9.3. Under the assumptions of Theorem 1.3, and assuming addi-
tionally that

inf
BR/2

u ≤ 1 and I(f ;B2R; η2R) ≤ δ0,

we have, for any k ≥ 1,

λ̃BR/2(Mk) ≤ (1− µ)k,

where λ̃BR/2(Mk) is the distribution function of u in BR/2 defined by (7.2).

Proof. Recall Dk := {x ∈ BR/2 : u(x) ≤Mk}. Claim: for any k ≥ 1

ν[(Dk+1 \Dk) ∩BR/2] ≥ µ ν[BR/2 \Dk].

Consider the cover V of the set BR/2 \Dk defined by

V :=
{
Brx(x) : x ∈ BR/2 \Dk, rx = d(x,Dk)

}
.

By Lemma 9.2, we have

ν[Dk+1 ∩Brx/4(x)] ≥ µν[Brx(x)].
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Using Vitali’s covering lemma, we may take a sequence of balls Bri(xi) ∈ V
such that Bri/4(xi) are pairwise disjoint and BR/2 \Dk ⊂ ∪iBri(xi). Moreover,
by the choice of rx, we also have Bri/4(xi) ∩Dk = ∅ and henceforth,

∪iBri/4 ∩BR/2 ⊂ BR/2 \Dk.

Now, we compute

ν[BR/2 \Dk] ≤ ν[∪iBri(xi)] ≤
∑
i

ν[Bri(xi)] ≤
∑
i

1

µ
ν[Dk+1 ∩Bri/4(xi)]

=
1

µ
ν[∪i(Dk+1 ∩Bri/4(xi))] =

1

µ
ν[Dk+1 ∩ (∪iBri/4(xi))]

≤ 1

µ
ν[Dk+1 ∩ (BR/2 \Dk)].

Here, in the first equality in the second line, we have used the fact that the
balls {Bri/4}i are disjoint. This completes the proof of the claim.

Again, recalling the definition of λ̃(t) = λ̃BR/2(t) (7.2), it is a direct conse-
quence of the above claim that

λ̃(Mk+1) ≤ (1− µ)λ̃(Mk).

The required estimate follows by applying this inequality inductively.

Proof of Theorem 1.3. By rescaling u as

ũ =
u

e1/p0

[
infBR/2 u+ I(f,B2R, η2R)

] ,
we have

∆ũ ≤ e−1/p0

[
inf
BR/2

u+ I(f ;B2R; η2R)

]−1

f := f̃ .

Then, it follows from ii) in Lemma 2.5 that

inf
BR/2

ũ ≤ 1, and I(f̃ , B2R, η2R) ≤ 1

e1/p0
≤ δ0.

On the other hand, from i) in Lemma 2.5, we know that p0 satisfies

1 + (Mp0 − 1)

∞∑
k=0

Mp0kλ̃(Mk) ≤ e.

Applying Lemma 9.3 and Lemma 7.4 together with the above inequality, we
have

(

 
BR/2

ũp0)1/p0 ≤ e1/p0 .

The required estimate is then obtained by re-normalizing ũ back.
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10. Proof of Harnack Inequalities III. In this section, we give proofs
of Theorem 1.4 and Theorem 1.5. Recall the constant p0 in the statement of
Theorem 1.3 (see Lemma 2.5), and the constants δ0,M, µ, p1 from Section 2.
Again, they are chosen w.r.t to the large ball B2R. The key role in our proof
of the Harnack inequalities plays the following lemma.

Lemma 10.1. Under the assumption of Theorem 1.4, and assuming addi-
tionally that ( 

BR

(u+)p0
)1/p0

≤ 1, I(f,B2R, η2R) ≤ δ0

and β := u(x0) > M,Br0(x0) ⊂ BR with r0 = RC3β
−p1. Then

sup
Br0 (x0)

u ≥ β(1 + 1/M).

Proof. We argue by contradiction. Suppose that

sup
Br0 (x0)

u < β(1 + 1/M).

Consider the function

w =
β(1 + 1/M)− u

β/M
on Br′(y0)

with r′ = r0/4 and ρ(y0, x0) = r0/8. Note that w ≥ 0 satisfies

∆νw ≤
−f
β/M

≤ |f | in Br′(x0),

and

inf
Br′/2(y0)

w ≤ w(x0) ≤ 1.

Thus, we may apply the Lemma 8.1 to obtain

(10.1) µν[Br′(y0)] ≤ ν[{w ≤M} ∩Br′/18(y0)].

Observe that w ≤ M implies u ≥ β/M . Therefore, (10.1) together with the
Chebyshev’s inequality implies that

β ≤ M

µ1/p0

( 
Br′ (y0)

(u+)p0
)1/p0

≤ M

µ1/p0

(
ν[BR]

ν[Br′(y0)]

)1/p0

.(10.2)

Now, recalling the choice of r′ = r0/4 and p1 (2.8), and applying doubling
estimate (7.1) to Br′(y0) ⊂ BR(y0) ⊂ B2R, we obtain

β ≤ M

µ1/p0
D2R

(
R

r′

)Nη2R/p0
≤ M

µ1/p0
D2R

(
4

C3

)Nη2R/p0
β.
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By the choice of C3 (2.8) and Lemma 2.4, the above inequality implies β < β,
which is impossible.

Finally, both Theorem 1.4 and Theorem 1.5 can be deduced from Lemma
10.1. Recall the constants M,p1, C3, µ from Section 2.

Proof of Theorem 1.4. We first prove Theorem 1.4 with p = p0. As in
the proof of Theorem 1.3, by rescaling u as

ũ =

[( 
BR

(u+)p0
)1/p0

+ I(f ;B2R, η2R)/δ0

]−1

u,

we may assume that u satisfies the hypothesis of Lemma 10.1. Thus, it suffices
to bound supu by the constant C1(p0) given in (2.9). Again, we argue by
contradiction. Suppose that there exists x0 ∈ BR/2 such that

β := u(x0) > C1(p0).

Consider the sequence {xk} defined as follows: choose inductively xk+1 so that

u(xk+1) = sup
Brk (xk)

u, rk = RC3 u(xk)
−p1 .

The hypothesis on β > C1(p0) and the choice of C1(p0) together imply

RC3

∞∑
k=0

1

βp1(1 + 1/M)kp1
≤ R/3.

Hence, we may inductively apply Lemma 10.1 to obtain

u(xk) ≥ C1(p0)(1 + 1/M)k, rk <
RC3

Cp11 (p0)(1 + 1/M)p1k
,
∑
k

rk ≤
R

3
.

However, this implies xk ∈ Brk(xk) ⊂ BR for all k ≥ 0 and u(xk) tends to ∞
in BR. This contradicts the fact that u is continuous in BR and hence proves
the case p = p0.

For p > p0, one may take C1(p) = C1(p0) and the required inequality
follows from standard Lp theory. For p < p0, one may apply a standard
interpolation argument (see, e.g. Chapter 4 of [9]). In our argument, we need
the factor η2R given by the doubling property and get

C1(p) = C̃1(p,N, η2R)C1(p0).

Note that η2R only depends on
√
KR.

Proof of Theorem 1.5. As in the proof of Theorem 1.3, by rescaling u
as

u

C0

[
infBR/2 u+ I(f ;BR, η2R)

] ,
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we may assume

inf
BR/2

u+ I(f ;BR, η2R) ≤ 1

C0
and I(f ;BR, η2R) ≤ δ0.

By Theorem 1.3, we obtain ( 
BR/2

up0

)1/p0

≤ 1.

Using Lemma 10.1 and following the same argument as in the proof of Theorem
1.4, we obtain

sup
BR/2

u ≤ C1(p0) = C2.

The required estimate is achieved by re-scaling u back.

11. Appendix: Fully-Nonlinear Uniform Elliptic Equations. In
this appendix, we briefly explain how the proof presented herein could be
extended to cover fully nonlinear uniform elliptic equations on Riemannian
manifolds (ν = volg). According to the standard theory of fully nonlinear
PDEs, it suffices to prove the Harnack inequalities for the Pucci extremal op-
erator.

Definition 11.1. Let θ ≥ 1 be a constant and u ∈ C2. The Pucci
extremal operator is defined by

M−θ [u](x) :=M−θ (H) :=
∑
λi≥0

λi(H) + θ
∑
λi≤0

λi(H),

M+
θ [u](x) :=M+

θ (H) :=
∑
λi<0

λi(H) + θ
∑
λi≥0

λi(H),

where H = ∇2u(x) and λi(H) denote eigenvalues of H.

The next lemma demonstrates the generality and the extremity of the Pucci
operator (see [3]).

Lemma 11.2. Let SymTM be the bundle of g-self-adjoint operators on
TM . Let H ∈ SymTM be a section. Then

M−θ (H) := inf {tr (A ·H) , A ∈ SymTM , Id ≤ A ≤ θId} ;

M+
θ (H) := sup {tr (A ·H) , A ∈ SymTM , Id ≤ A ≤ θId} .

To study the Pucci operator, we introduce
(11.1)

Eθ(r) := sup
(x,y)

{
M+

θ

(
∇2

[
1

2
ρ2
y

]
(x)

)
− tr

(
∇2

[
1

2
ρ2
y

]
(x)

)
: ρ(x, y) ≤ r

}
.

The following lemma proves some nice properties of this quantity.
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Lemma 11.3. Let (M, g) be a complete Riemannian manifold. Then the
following statements hold:

i) If ∇2
(

1
2ρ

2
y

)
(x) is non-negative definite for all x, y ∈ BR, then

Eθ(2R) ≤ (θ − 1) (1 + (n− 1)H(Rω)) ,

where K is the Ricci lower bound in BR. In particular, this holds for any
ball BR with R ≤ Rs, where Rs depends on sectional curvature upper
bound in B2R.

ii) Suppose, in BR, the sectional curvatures are bounded from below by −Ks

with Ks ≥ 0. Then

Eθ(2R) ≤ (θ − 1)
(
1 + (n− 1)H(

√
Ks/nR)

)
.

Proof. The first part of i) follows immediately from the definition of Eθ(R)
and Ricci comparison. The second part of i) can be proved by applying the
sectional curvature comparison against spheres. Statement ii) follows from
standard sectional curvature comparison.

The proofs of Theorems 1.3–1.5 can be easily extended to prove the fol-
lowing Harnack inequalities for Pucci extremal operator.

Theorem 11.4. Let (M , g, ν) be a complete smooth Riemannian metric-
measure space. Let K ≥ 0 be a constant. Let u ∈ C2(B2R) ∩ C(B2R) and
f ∈ C(B2R). Suppose that Ric |B2R

≥ −Kg. Then the following statments hold

if we now assume p0, C1, C2 (not including ηR) to depend on R
√
K + Eθ(2R)

instead of R
√
K:

i) M−θ [u] ≤ f and u ≥ 0 in B2R imply inequality (1.3);

ii) M+
θ [u] ≥ f in B2R implies inequality (1.4);

iii) M−θ [u] ≤ |f | and M+[u] ≥ f and u ≥ 0 in B2R imply inequality (1.5).

Remark 11.5. In the case that Sec|B2R
= 0, Theorem 11.4 along with the

Lemma 11.3 recovers the Harnack inequality proved in [2] and [10].

Remark 11.6. Unlike in the divergence case, if θ 6= 1, we believe that the
dependence on Eθ(r) (hence sectional curvature) cannot be replaced by Ricci
curvature. This can be seen in the following way. Fix some x ∈ M , if the
hessian H(x) := ∇2(1

2ρ
2
y(x)) has a negative eigenvalue, then by choosing θ

large,
M+

θ (H) ∼ θλn(H), M−θ (H) ∼ θλ1(H),

where λ1, λn are, respectively, the least and greatest eigenvalue of H. Thus,
M+

θ ,M
−
θ are affected by the extremal eigenvalues of H. While in divergence

case the operator (In ≤ A ≤ θIn)ˆ
g(A∇

ρ2
y

2
,∇ϕ) ∼ θρy|∇ϕ|, ϕ test function
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is only affected by ρ. Based on this comparison, the dependence on Eθ(R)
seems necessary.

Proof of Theorem 11.4. Recall that the proofs in Sections 9–10 only
rely on Lemma 8.1, hence it suffices to prove Lemma 8.1 for M−θ with R

√
K

in the constant µ,M replaced by

R
√
K + Eθ(2R).

Reviewing the proof of Lemma 8.1, we see that it suffices to control ∆w from
above on the contact set A = A(a,Br/6(y0)/Br(x0), w) (recall w = u + ψ) by

M−θ u ≤ f and R
√
K+Eθ. This can be done as the following simple calculation

shows.
For x ∈ A, by contact condition, we have ∇2w(x) ≥ −a∇2(1

2ρ
2
y)(x). De-

note S = ∇2
νw(x) and H = Hν

y (x). We then have S + aH ≥ 0. Thus,

∆u(x) = tr[S + aH]− a tr[H] ≤M−θ (S + aH)− a tr[H] ≤M−θ (S) + aEθ(2r).

While S = ∇2u+∇2ψ, by the elementary inequality regarding Pucci operator,
we have

M−θ (S) ≤M−θ [u](x) +M+[ψ](x).

Following the construction of the barrier ψ (Lemma 6.4), one can easily see

r2M+[ψ] ≤ −α(α+ 2) + aEθ(2r).

Thus by replacing
√
KR with

√
KR + Eθ(R) in the expression of α, ∆u is

controlled on the contact set in the required way. The rest of the proof of
Theorem 11.4 follows line by line from our earlier proofs in Sections 9–10.

Note: The first version of this paper was posted on arXiv in 2011 (arXiv:
1102.5567). Right after that, we observed that the ABP estimate established
in this paper can be used to give new proofs for some classical geometric in-
equalities. To point out this interesting geometric application of the ABP tech-
nique, we wrote a new paper [22], which included a version of the ABP estimate
on standard Riemannian manifold and also briefly explained the application on
Harnack inequalities to non-divergent equations. However, a detailed version of
the ABP estimate on metric measure spaces and the Krylov–Safonov–Harnack
inequalities for weighted Laplacian equation has never appeared. We would
like to thank Professor Valentino Tosatti for his interest in this work and also
encouraging us to publish this paper.

Acknowledgement: The authors would like to thank the anonymous referee
for his/her extremely careful reading and useful comments, which improved
the overall readability of the paper.
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