Collapsing of Calabi-Yau manifolds and special Lagrangian submanifolds
Wybierz format
RIS BIB ENDNOTECollapsing of Calabi-Yau manifolds and special Lagrangian submanifolds
Data publikacji: 24.11.2017
Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 53-78
https://doi.org/10.4467/20843828AM.17.005.7081Autorzy
Collapsing of Calabi-Yau manifolds and special Lagrangian submanifolds
In this paper, the relationship between the existence of special Lagrangian submanifolds and the collapsing of Calabi–Yau manifolds is studied. First, special Lagrangian fibrations are constructed on some regions of bounded curvature and sufficiently collapsed in Ricci-flat Calabi–Yau manifolds. Then, conversely, it is shown that the existence of special Lagrangian submanifolds with small volume implies the collapsing of some regions in the ambient Calabi–Yau manifolds.
1. Anderson M. T., Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc., 2 (1989), 455–490.
2. Anderson M. T., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102 (1990), 429–445.
3. Anderson M. T., The L2 structure of moduli spaces of Einstein metrics on 4-manifolds, G.A.F.A., (1991), 231–251.
4. Cheeger J., Degeneration of Einstein metrics and metrics with special holonomy, in Sur- veys in differential geometry VIII, 29–73.
5. Cheeger J., Colding T. H., On the structure of space with Ricci curvature bounded below I, Jour. of Diff. Geom., 46 (1997), 406–480.
6. Cheeger J., Colding T. H., On the structure of space with Ricci curvature bounded below II, Jour. of Diff. Geom., 52 (1999), 13–35.
7. Cheeger J., Colding T. H., Tian G., On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12 (2002), 873–914.
8. Cheeger J., Fukaya K., Gromov M., Nilpotent structures and invariant metrics on collapsed manifolds, Joural of the American Mathematical Society, 5 (1992), 327–372.
9. Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bound I, J. Differ. Geom., 23 (1986), 309–364.
10. Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded II, J. Diff. Geom., 32 (1990), 269–298.
11. Cheeger J., Tian G., Anti-self-duality of curvature and degeneration of metrics with spe-cial holonomy, Commun. Math. Phys., 255 (2005), 391–417.
12. Cheeger J., Tian G., Curvature and injectivity radius estimates for Einstein 4-manifolds, Journal of the American Mathematical Society, 19 (2006), 487–525.
13. Duistermaat J., On global action-angle coordinates, Comm. Pure Appled Math., 33 (1980), 687–706.
14. Fukaya K., Hausdorff convergence of Riemannian manifolds and its application, Advance Studies in Pure Mathematics, 18 (1990), 143–234.
15. Fukaya K., Multivalued Morse theory, asymptortic analysis and mirror aymmetry, Pro- ceedings of Symposia in Pure Mathematics, 73 (2005), 205–278.
16. Green R. E., Wu H., Lipschitz converges of Riemannian manifolds, Pacific J. Math., 131 (1988), 119–141.
17. Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Birkh¨auser 1999.
18. Goldstein E., A construction of new families of minimal lagrangian submanifolds via torus action, J. Diff. Geom., 58 (2001), 233–261.
19. Goldstein E., Calibrated fibrations, Comm. Anal. Geom., 10 (2002), 127–150.
20. Gross M., Examples of special lagrangian fibrations, in Symplectic Geometry and Mirror Symmetry, World Scientific Singapore, (2001), 81–109.
21. Gross M., Special lagrangian fibrations II-Geometry, Surveys in Differential Geometry: Differential geometry inspired by string theory, International Press, (1999), 341–404.
22. Gross M., Wilson P. M. H., Mirror symmetry via 3-tori for a class of Calabi–Yau treefolds, Math. Ann., 309 (1997), 505–531.
23. Gross M., Wilson P. M. H., Large complex structure limits of K3 surfaces, J. Diff. Geom., 55 (2000), 475–546.
24. Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second two, Springer 1983.
25. Gukov S., Yau S. T., Zaslow E., Duality and fibrations on G2 manifolds, Turkish Journal of Mathematics, 27 (2003), 61–97.
26. Harvey R., Lawson H. B., Calibrated geometries, Acta Math., 148 (1982), 47–157.
27. Hitchin N., The moduli space of special lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 503–515.
28. Joyce D. D., Compact manifolds with special holonomy, Oxford University Press, 2000.
29. Joyce D. D., Singularities of special lagrangian fibrations and the SYZ conjecture, Comm. Anal. Geom., 11 (2003), 859–907.
30. Joyce D. D., Lectures on Calabi–Yau and special Lagrangian geometry, math.DG/0108088.
31. Kontsevich M., Soibelman Y., Homological mirror symmetry and torus fibrations, in Symplectic geometry and mirror symmetry, World Sci. Publishing, (2001), 203–263.
32. Lu P., K¨ahler–Einstein metrics on Kummer threefold and special lagrangian tori, Comm. Anal. Geom., 7 (1999), 787–806.
33. Mclean R. C., Deformation of calibrated submanifolds, Comm. Anal. Geom., 6 (1998), 705–747.
34. Petersen P., Riemannian Geometry, Springer, 1997.
35. Ruan W. D., On the convergence and collapsing of K¨ahler metrics, J. Differ. Geom., 52 (1999), 1–40.
36. Ruan W. D., Generalized special Lagrangian torus fibration for Calabi–Yau hypersurfaces in toric varieties. I. Commun. Contemp. Math., 9 (2007), no. 2, 201–216.
37. Ruan W. D., Generalized special Lagrangian torus fibrations for Calabi–Yau hypersurfaces in toric varieties. II. in Mirror symmetry. V, Amer. Math. Soc., Providence, RI, 2006. 457–477.
38. Ruan W. D., Generalized special Lagrangian fibration for Calabi–Yau hypersurfaces in toric varieties III: The smooth fibres, arXiv:math/0309450.
39. Ruan W. D., Zhang Y., Convergence of Calabi–Yau manifolds, Advances in Mathematics Volume 228, Issue 3, (2011), 1543–1589.
40. Salur S., Deformations of special lagrangian submanifolds, Comm. Cont. Math., Vol. 2, 3 (2000), 365–372.
41. Strominger A., Yau S. T., Zaslow E., Mirror symmetry is T-duality, Nucl. Phys. B, 479 (1996), 243–259.
42. Thomas R. P., Yau S. T., Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom., 10 (2002), no. 5, 1075–1113.
43. Tosatti V., Limits of Calabi–Yau metrics when the K¨ahler class degenerates, J. Eur. Math. Soc., 11 (2009), no. 4, (2009), 755–776.
44. Yau S. T., On the Ricci curvature of a compact K¨ahler manifold and complex Monge– Ampere equation I, Comm. Pure Appl. Math., 31 (1978), 339–411.
45. Yau S. T., Einstein manifolds with zero Ricci curvature, in Lectures on Einstein mani- folds, International Press, (1999), 1–14.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2017, Tom 54, s. 53-78
Typ artykułu: Oryginalny artykuł naukowy
Tsinghua University Yau Mathematical Sciences Center China
Publikacja: 24.11.2017
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2454
Liczba pobrań: 1583