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COLLAPSING OF CALABI–YAU MANIFOLDS AND SPECIAL

LAGRANGIAN SUBMANIFOLDS

by Yuguang Zhang

Abstract. In this paper, the relationship between the existence of spe-
cial Lagrangian submanifolds and the collapsing of Calabi–Yau manifolds
is studied. First, special Lagrangian fibrations are constructed on some re-
gions of bounded curvature and sufficiently collapsed in Ricci-flat Calabi–
Yau manifolds. Then, conversely, it is shown that the existence of special
Lagrangian submanifolds with small volume implies the collapsing of some
regions in the ambient Calabi–Yau manifolds.

1. Introduction. The notion of the special Lagrangian submanifold was
introduced by Harvey and Lawson in the seminal paper [26]. Mclean studied
the deformation theory of special Lagrangian submanifolds in [33]. In the
pioneer work [41], Stominger, Yau and Zaslow propose a conjecture about
constructing the mirror manifold of a given Calabi–Yau manifold, the SYZ
conjecture, via special Lagrangian fibrations. Since then, lots of works have
been devoted to studying special Lagrangian submanifolds and fibrations (cf.
[18–20,27,29,30,32,36–38,40,42], and references in [30]). In [31] and [23],
a refined version of SYZ conjecture was proposed by using the collapsing of
Ricci-flat Calabi–Yau manifolds in the Gromov–Hausdorff sense. These two
versions of SYZ conjecture suggest a relationship between the existence of
special Lagrangian submanifolds and the collapsing of Calabi–Yau manifolds.
In this paper, we study this relationship.

If (M,ω, J, g) is a compact Ricci-flat Kähler n-manifold, and admits a
nowhere vanishing holomorphic n-form Ω (the holomorphic volume form),
(M,ω, J, g,Ω) is called a Ricci-flat Calabi–Yau n-manifold, and (ω, J, g,Ω) is
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called a Calabi–Yau structure on M . We can normalize Ω in the following way

ωn

n!
=

(−1)
n2

2

2n
Ω ∧ Ω,

(cf. [30]). Yau’s theorem on Calabi conjecture guarantees the existence of
Ricci-flat Kähler metrics on Kähler manifolds with trivial canonical bundle (cf.
[44]), which implies the existence of Calabi–Yau structures on such manifolds.
The holonomy group of a Ricci-flat Calabi–Yau n-manifold is a subgroup of
SU(n). The study of Calabi–Yau manifolds is important in both mathematics
and physics (cf. [45]).

A special Lagrangian submanifold L of phase θ ∈ R in a Ricci-flat Calabi–
Yau n-manifold (M,ω, J, g,Ω) is a Lagrangian submanifold L ⊂M correspond-

ing to the Kähler form ω so that Re e
√
−1θΩ|L = dvg|L where dvg|L denotes the

volume form of g|L on L. Equivalently, dimR L = n,

ω|L ≡ 0, Im e
√
−1θΩ|L ≡ 0

(cf. [26]). In [33], Mclean showed that, for a compact special Lagrangian sub-
manifold L in a Calabi–Yau manifold (M,ω, J, g,Ω), the local moduli space
of special Lagrangian submanifolds near L is a smooth manifold of dimension
b1(L), and, moreover, the tangent space of the moduli space at L can be identi-
fied with the space of harmonic 1-forms on (L, g|L). In [27], various structures
on the moduli space of special Lagrangian submanifolds were studied.

A special Lagrangian fibration on a Calabi–Yau n-manifold (M,ω,Ω) con-
sists of a topological space B and a surjection f : M −→ B such that there
is an open dense subset B0 ⊂ B, which is a real n-manifold, such that, for
any b ∈ B0, f−1(b) is a smooth special Lagrangian submanifold in (M,ω,Ω).
By [13] (see also [21]), f−1(b), b ∈ B0, is an n-torus. The SYZ conjecture as-
serts the existence of special Lagrangian fibrations on a Calabi–Yau manifold
whose complex structure is close enough to the large complex structure limit
point (cf. [41]). The mirror manifold is a compactification of the dual fibra-
tion of f : f−1(B0) −→ B0. Generalized special Lagrangian fibrations were
constructed in some almost Calabi–Yau manifolds in [19, 36–38]. In [22],
special Lagrangian fibrations were constructed on some Borcea–Voisin type
Calabi–Yau 3-manifolds with degenerated Ricci-flat Kähler–Einstein metrics.

In [31] and [23], SYZ conjecture was refined to the following form: Let
π :M→ ∆ be a maximally unipotent degeneration of Calabi–Yau n-manifolds
over the unit disc ∆ ⊂ C, and α be an ample class on M. For any t ∈ ∆\{0},
let g̃t be the unique Ricci-flat Kähler metric on Mt = π−1(t) with its Kähler
form ω̃t ∈ α|Mt ∈ H1,1(Mt,R) ∩ H2(Mt,Z), and ḡt = diam−2

g̃t
(M)g̃t. Then

(Mt, ḡt) converges to a compact metric space (B, dB) of Hausdorff dimension
n in the Gromov–Hausdorff sense, when t→ 0. Furthermore, there is a closed
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subset SB ⊂ B of Hausdorff dimension n − 2 such that B\SB is an affine
manifold, and dB is induced by a Monge–Ampère metric gB on B\SB (cf. [31]).
The mirror manifolds are supposed to be constructed from the dual affine
structure on B\SB and the metric gB. This conjecture was verified for some
K3 surfaces in [23]. By using hyper-Kähler rotation, some K3 surfaces admit
special Lagrangian fibrations. It was shown in [23] that some K3 surfaces with
Ricci-flat Kähler metrics collapse along such special Lagrangian fibrations. The
two versions of SYZ conjecture suggest the equivalence between the existence of
special Lagrangian submanifolds and the collapsing of Ricci-flat Kähler metrics
on some regions of Calabi–Yau manifolds, when complex structures are close
enough to the large complex limit point.

In Riemannian geometry, the collapsing of Riemannian manifolds has been
studied by various authors (cf. [8–10, 12, 14], and references in [14]), since
Gromov introduced the notion of Gromov–Hausdorff topology in [17]. In [10],
it was proved that there is a constant ε0(n) > 0 depending only on n such
that there is an F -structure of positive rank on the region Mε0 in a Riemann-
ian n-manifold (M, g), where Mε0 denotes the subset with injectivity radius
ig(p) < ε0 and sectional curvature sup

Bg(p,1)
|Kg| ≤ 1, for any p ∈ Mε0 . See [9]

and [10] for the definition of an F -structure of positive rank, which is a gen-
eralization of fibration. A folklore conjecture says that there should be special
Lagrangian fibrations on such region in a Calabi–Yau manifold, i.e. the region
of bounded curvature and sufficiently collapsed (cf. [15]). The first result in the
present paper is devoted to constructing special Lagrangian fibrations under
such Riemannian geometric conditions.

Theorem 1.1. For any n ∈ N and any σ > 1, there exists a constant
ε = ε(n, σ) > 0 depending only on n and σ such that, if (M,ω, J, g,Ω) is a
closed Ricci-flat Calabi–Yau n-manifold with [ω] ∈ H2(M,Z), and p ∈M such
that

i) the injectivity radius and the sectional curvature

ig(p) < ε, sup
Bg(p,1)

|Kg| ≤ 1,

ii) [Ω|Bg(p,σig(p))] 6= 0 in Hn(Bg(p, σig(p)),C),

then there is an open subset W ⊂ M satisfying Bg(p, σig(p)) ⊂ W , and
(W,ω,Ω) admits a special Lagrangian fibration of a phase θ ∈ R, i.e. there
is a topological space B, and a surjection f : W −→ B such that, for any
b ∈ B, f−1(b) is a smooth n-submanifold,

ω|f−1(b) ≡ 0, and Im e
√
−1θΩ|f−1(b) ≡ 0.
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Remark 1.2. From the proof of this theorem, we can see that B is an
orbifold, and, if b belongs to the singular set of B, f−1(b) is a smooth multi-
fiber.

Remark 1.3. Condition ii) in the theorem can be replaced by the following
small non-vanishing n-cycle condition: there is an [A] ∈ Hn(Bg(p, σig(p)),Z)
such that ∫

A
Ω 6= 0.

This condition cannot be removed since it is satisfied if there is a special La-
grangian submanifold L near p having size comparable with ig(p), for example
L ⊂ Bg(p, σig(p)).

Remark 1.4. It is a challenging task to verify condition i) in Theorem
1.1, i.e. to find the region of bounded curvature in a Ricci-flat Calabi–Yau
manifold. It was shown in [12] that if (M,ω, J, g,Ω) is a K3-surface with
Ricci-flat metric, there are universal constants C > 0, τ > 0, and a finite
subset {pj} ⊂M , 1 ≤ j ≤ τ , such that

sup
Bg(p,1)

|Kg| ≤ C,

for any p ∈M\
⋃

1≤j≤τ
Bg(pj , 2).

Next, in the opposite direction, we show that the existence of special La-
grangian submanifolds with small volume implies the collapsing of some regions
in the ambient Calabi–Yau manifolds. The following theorem is a corollary of
the volume comparison theorem for calibrated submanifolds in [19].

Theorem 1.5. Let (M,ω, J, g,Ω) be a closed Ricci-flat Calabi–Yau n-ma-
nifold, and p ∈M . Assume that the sectional curvature Kg satisfies

sup
Bg(p,2π)

Kg ≤ 1,

and there is a special Lagrangian submanifold L of phase θ such that p ∈ L,
and ∫

L
Re e

√
−1θΩ <

π

2n
$n−1,

where $n−1 denotes the volume of Sn−1 with the standard metric of constant
curvature 1. Then the injectivity radius ig(p) of (M, g) at p satisfies

ig(p)
n ≤ nπn−1

2n−1$n−1

∫
L

Re e
√
−1θΩ.
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As mentioned in Remark 1.4, the assumption of bounded curvature is not
necessary. If we strengthen the condition of the existence of a special La-
grangian submanifold to the existence of a special Lagrangian fibration, we
can still obtain the collapsing result in the absence of bounded curvature.

Theorem 1.6. For any n ∈ N and any ε > 0, there is a constant δ =
δ(n, ε)> 0 such that the following statement is true: Assume that (M,ω, J, g,Ω)
is a closed Ricci-flat Calabi–Yau n-manifold, p ∈ M , and there is a homology
class A ∈ Hn(M,Z) such that, for any x ∈ Bg(p, 1), there is a special La-
grangian submanifold Lx of phase θ passing x and presenting A, i.e. x ∈ Lx
and [Lx] = A. If ∫

A
Re e

√
−1θΩ < δ,

then
Volg(Bg(p, 1)) ≤ ε.

Theorem 1.1, Theorem 1.5 and Theorem 1.6 give an evidence of the equiv-
alence between the existence of special Lagrangian submanifolds and the col-
lapsing of Ricci-flat Kähler metrics on Calabi–Yau manifolds near the large
complex limit point from the Riemannian geometry’s point of view.

The organization of the paper is as follows: In §2, we review some notions
and results, which will be used in this paper. In §3, we use the blow-up argu-
ment to give local approximations of Calabi–Yau manifolds by complete flat
Calabi–Yau manifolds. In §4, we study the deformation of special Lagrangian
fibrations. In §5, we prove Theorem 1.1 by combining the results in §3 and §4.
Finally, we prove Theorem 1.5 and Theorem 1.6 in §6.
Acknowledgement: The author would like to thank Prof. Weidong Ruan
and Prof. Xiaochun Rong for useful discussions. Thanks also goes to Prof.
Fuquan Fang for his continuous support.

2. Preliminaries. In this section, we review some notions and results
which will be used in the proof of Theorem 1.1, Theorem 1.5 and Theorem 1.6.

2.1. Cheeger–Gromov convergence. Since Gromov introduced the concept
of Gromov–Hausdorff convergence in [17], the convergence of Riemannian man-
ifolds has been studied from various perspectives (cf. [1, 2, 11, 12, 14, 16, 23,
39,43] and references in [4]). There is an extension of Gromov–Hausdorff con-
vergence to sequences of pointed metric spaces for dealing with non-compact
situations.

Definition 2.1 ( [17], [14]). For two pointed complete metric spaces
(X, dX , x) and (Y, dY , y), a map ψ : (X,x) → (Y, y) is called an ε-pointed
approximation if ψ(BdX (x, ε−1)) ⊂ BdY (y, ε−1), ψ(x) = y, and ψ|BdX (x,ε−1) :

BdX (x, ε−1) −→ BdY (y, ε−1) is an ε-approximation, i.e.

BdY (y, ε−1) ⊂ {y′ ∈ Y |dY (y′, ψ(BdX (x, ε−1))) < ε},
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and
|dX(x1, x2)− dY (ψ(x1), ψ(x2))| < ε

for any x1 and x2 ∈ BdX (x, ε−1). The number

dGH((X, dX, x), (Y, dY, y)) = inf

{
ε

∣∣∣∣ There are ε-pointed approximations
ψ: (X,x)→(Y, y), and φ: (Y, y)→(X,x)

}
is called pointed Gromov–Hausdorff distance between (X, dX , x) and (Y, dY , y).
We say that a family of pointed complete metric spaces (Xk, dXk , xk) converges
to a complete metric space (Y, dY , y) in the pointed Gromov–Hausdorff sense,
if

lim
k→∞

dGH((Xk, dXk , xk), (Y, dY , y)) = 0.

The following is the famous Gromov pre-compactness theorem:

Theorem 2.2 ([17]). Let {(Mk, gk, pk)} be a family of pointed complete
Riemannian manifolds such that Ricci curvatures Ric(gk) ≥ −C for a constant
C independent of k. Then, a subsequence of (Mk, gk, pk) converges to a pointed
complete path metric space (Y, dY , y) in the pointed Gromov–Hausdorff sense.

The structure of the limit space was studied in [5,7,11,12] et al. We need
the following result in the proof of Theorem 1.6.

Theorem 2.3 ([5], [4]). Let {(Mk, gk, pk)} be a family of pointed complete
Ricci-flat Einstein n-manifolds, i.e. Ric(gk) ≡ 0, such that

Volgk(Bgk(pk, 1)) ≥ C,
for a constant C independent of k, and (Y, dY , y) be a pointed complete path
metric space such that

lim
k→∞

dGH((Mk, gk, pk), (Y, dY , y)) = 0.

Then the Hausdorff dimension dimH Y = n, and there is a closed subset SY ⊂
Y of Hausdorff dimension dimH SY < n− 1 such that Y \SY is an n-manifold,
and dY is induced by a Ricci-flat Einstein metric g∞ on Y \SY . Furthermore,
for any compact subset D ⊂ Y \SY , there are embeddings Fk,D : D −→ Mk

such that F ∗k,Dgk converges to g∞ in the C∞-sense.

In [17] and [16], a convergence theorem, the Cheeger–Gromov convergence
theorem, was proved for non-collapsed Riemannian manifolds with bounded
curvature. The Kähler version of this theorem can be found in [35]. See [11]
for the convergence of manifolds with other holonomy groups.

Theorem 2.4 (Kähler version of Cheeger–Gromov convergence theorem).
Let {(Mk, gk, Jk, ωk, pk)} be a family of pointed compact Kähler n-manifolds
with sectional curvature and injectivity radius at pk

|Kgk | ≤ 1, igk(pk) ≥ C,
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for a constant C>0 independent of k. Then a subsequence {(Mk, gk, Jk, ωk, pk)}
converges to a complete Kähler n-manifold (X, g, J, ω, p) in the pointed C1,α-
sense, i.e. for any r > 0, there are embeddings Fk,r : Bg(p, r) −→ Mk such

that Fk,r(p) = pk, F ∗k,rgk (resp. dF−1
k,r JkdFk,r and F ∗k,rωk) converges to g (resp.

J and ω) in the C1,α-sense.

In [1] it is shown that if we assume gk to be Einstein metrics then, by
passing to a subsequence, {(Mk, gk, Jk, ωk, pk)} converges to (X, g, J, ω, p) in
the pointed C∞-sense, and g is an Einstein metric too, i.e. F ∗k,rgk (resp.

dF−1
k,r JkdFk,r and F ∗k,rωk) converges to g (resp. J and ω) in the C∞-sense.

Assume that (Mk, gk, Jk, ωk, pk) are Ricci-flat Calabi–Yau manifolds and Ωk

are the corresponding holomorphic volume forms. Since Ωk are parallel, i.e.
∇gkΩk ≡ 0, for any r > 0, F ∗k,rΩk converge to a holomorphic volume form Ω

on X in the C∞-sense, and (X, g, J, ω,Ω) is a complete Ricci-flat Calabi–Yau
n-manifold.

In [9], [10], the collapsing of Riemannian manifolds with bounded curva-
ture was studied by combining blow-up arguments and the Cheeger–Gromov
convergence theorem. It was shown that there is a constant ε0(n) > 0 depend-
ing only on n such that there is an F -structure F of positive rank on a region
covering Mε0 in a Riemannian n-manifold (M, g), where Mε0 denotes a subset
with injectivity radius ig(p) < ε0 and sectional curvature sup

Bg(p,1)
|Kg| ≤ 1, for

any p ∈Mε0 . See [9] and [10] for the definition of F -structure of positive rank.
2.2. A comparison theorem for calibrated submanifolds. In [26], Harvey

and Lawson introduced the notion of a calibrated submanifold. If (M, g) is a
Riemannian manifold, and Θ is a closed n-form such that Θ|ξ ≤ dvξ for any
oriented n-plane ξ in the tangent bundle of M , then Θ is called a calibration
on M , where dvξ denotes the volume form on ξ. An oriented n-submanifold L
of M is called calibrated by the calibration Θ, if Θ|L equals to the volume form
of g|L on L. Mclean studied the deformation theory of calibrated submanifolds
in [33].

There are some examples of calibrated submanifolds: holomorphic sub-
manifolds in Kähler manifolds, special Lagrangian submanifolds in Calabi–
Yau manifolds, associative coassociative submanifolds in G2-manifolds, Cayley
submanifolds in Spin(7)-manifolds (cf. [26,28]) etc. If (M,ω, J, g) is a Kähler
m-manifold, then 1

n!ω
n, n ≤ m, are calibrations on M , and holomorphic n-

submanifolds are calibrated by 1
n!ω

n. If (M,ω, J, g,Ω) is a Ricci-flat Calabi–

Yau n-manifold, then, for any θ ∈ R, Re e
√
−1θΩ is a calibration on M , and

a special Lagrangian submanifold L of phase θ is calibrated by Re e
√
−1θΩ. If

(M, g) is a Riemannian manifold with holonomy group G2, then M admits
a parallel 3-form φ, which is a calibration on M , and ∗gφ is a calibration
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4-form on M . Submanifolds calibrated by φ are called associative submani-
folds, and submanifolds calibrated by ∗gφ are called coassociative submanifolds
(cf. [28]). If (M, g) is a Riemannian manifold with holonomy group Spin(7),
then M admits a calibration 4-form Ω, and Cayley submanifolds are subman-
ifolds calibrated by Ω (cf. [28]).

In [19], a volume comparison theorem for calibrated submanifolds was
obtained.

Theorem 2.5 (Theorem 2.0.1. in [19]). Let (M, g) be a closed Riemannian
manifold, Θ be a calibration n-form, and p ∈ M . Assume that the sectional
curvature Kg satisfies

sup
Bg(p, 2π√

Λ
)

Kg ≤ Λ, Λ > 0,

and there is a submanifold L calibrated by Θ such that p ∈ L. Then

Volg(Bg(p, r) ∩ L) ≥ Volh1(Bh1(r)),

for any r ≤ min{ig(p), π√
Λ
}, where h1 denotes the standard metric on Sn with

constant curvature Λ, and Bh1(r) denotes a metric r-ball in Sn.

2.3. Implicit function theorem. For studying the deformation of special
Lagrangian fibrations, we need the following quantitative version of implicit
function theorem.

Theorem 2.6 (Theorem 3.2 in [36]). Let (B1, ‖ ·‖1) and (B2, ‖ ·‖2) be two
Banach spaces, ‖ · ‖E be the standard Euclidean metric on Rn, U ⊂ Rn ×B1

be an open set, and F : U −→ B2 be a continuously differentiable map. Let

DF(y, σ)(ẏ + σ̇) = DyF(y, σ)ẏ +DσF(y, σ)σ̇,

for (y, σ) ∈ U , ẏ ∈ Rn and σ̇ ∈ B1. Assume that (0, 0) ∈ U and DσF(0, 0) :
B1 −→ B2 has a bounded linear inverse DσF(0, 0)−1 : B2 −→ B1 with

‖DσF(0, 0)−1‖ ≤ C

for a constant C > 0. Let r > 0, δ0 > δ > 0 be such constants that if ‖y0‖E < r
and ‖σ‖1 ≤ δ0, then (y0, σ) ∈ U ,

‖DσF(y0, σ)−DσF(0, 0)‖ ≤ 1

2C
and ‖F(y0, 0)‖2 ≤

δ

4C
.

Then, for any ‖y‖E < r, there exists a unique σ(y) ∈ B1 such that

F(y, σ(y)) = 0, ‖σ(y)‖1 ≤ δ.

Furthermore,

Dσ(y)ẏ = −DσF(y, σ)−1DyF(y, σ)ẏ.
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The difference between this version of implicit function theorem and the
usual one (cf. [24]) is that we use the condition ‖F(y, 0)‖2 ≤ δ

4C
instead of the

condition F(0, 0) = 0 in addition to other quantitative estimates.

3. The blow-up limit. Let {(Mk, ωk, Jk, gk,Ωk)} be a family of closed
Ricci-flat Calabi–Yau n-manifolds with [ωk] ∈ H2(Mk,Z), and pk ∈ Mk. As-
sume that

i) the injectivity radius and the sectional curvature fulfil the following
estimates:

igk(pk) <
1

k
, sup

Bgk (pk,1)
|Kgk | ≤ 1,

ii) there is a σ�1 such that [Ωk|Bgk (pk,σigk (pk))] 6=0 inHn(Bgk(xk, σigk(pk)),

C).

If we denote ω̃k = i−2
gk

(pk)ωk, g̃k = i−2
gk

(pk)gk, and Ω̃k = i−ngk (pk)Ωk, then

ig̃k(pk) = 1, sup
Bg̃k (pk,k)

|Kg̃k | ≤
1

k2
,

and [Ω̃k|Bg̃k (pk,σ)] 6= 0 in Hn(Bg̃k(pk, σ),C). By the Cheeger–Gromov’s con-

vergence theorem (cf. Theorem 2.4), a subsequence of (Mk, ω̃k, g̃k, Jk, Ω̃k, pk)
converges to a complete flat Calabi–Yau n-manifold (X,ω0, g0, J0,Ω0, p0) in the
C∞-sense, i.e. for any r > σ, there are embeddings Fr,k : Bg0(p0, r) −→ Mk

such that Fr,k(p0) = pk, and F ∗r,kg̃k (resp. F ∗r,kω̃k and F ∗r,kΩ̃k) converges to g0

(resp. ω0 and Ω0) in the C∞-sense. The purpose of this section is to prove
that (X,ω0,Ω0) admits a special Lagrangian fibration.

By the smooth convergence, ig0(p0) = lim
k→∞

ig̃k(pk) = 1. The soul theorem

(cf. [10], [34]) implies that there is a compact flat totally geodesic submanifold
S ⊂ X, the soul, such that (X, g0) is isometric to the total space of the normal
bundle ν(S) with a metric induced by g0|S and a natural flat connection.

Lemma 3.1. dimR S ≥ n.

Proof. If dimR S < n, then

Hn(X,C) = Hn(Tr(S),C) = Hn(S,C) = {0}

for any r > 0, where Tr(S) = {p ∈ X|distg0(p, S) ≤ r}. Let r0 > r1 > σ
be such that Tr1(S) ⊂ Bg0(p0, r0), and Fr0,k(Tr1(S)) ⊃ Bg̃k(pk, σ) for k � 1.
Then the inclusion maps induce homeomorphisms on cohomology groups

Hn(M,C) −→ Hn(Fr0,k(Tr1(S)),C) −→ Hn(Bg̃k(pk, σ),C),

and [Ω̃k] 7→ [Ω̃k|Fr0,k(Tr1 (S))] 7→ [Ω̃k|Bg̃k (pk,σ)] 6= 0.
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Thus [Ω̃k|Fr0,k(Tr1 (S))] 6= 0 in Hn(Fr0,k(Tr1(S)),C), which contradicts to

Hn(Fr0,k(Tr1(S)),C) ∼= Hn(Tr1(S),C) = {0}.

If πh : S̃ −→ S is the holonomy covering of S, then by Bieberbach’s
theorem (cf. [10], [34]), (S̃, π∗hg0) is isometric to a flat torus and πh has finite
order of at most λ(n), for a constant λ(n) depending on n only. If we denote
π̄ : Cn −→ X the universal covering of X with π̄(0) ∈ S, then S̄ = π̄−1(S)
is a real linear subspace of Cn, and ωE = π̄∗ω0 (resp. ΩE = π̄∗Ω0) is the
standard flat Kähler form (resp. the standard holomorphic volume form), i.e.
ωE =

√
−1
∑

α dzα ∧ dz̄α and ΩE = dz1 ∧ · · · ∧ dzn under some coordinates

z1, · · · , zn on Cn. Note that there is a lattice Λ ⊂ S̄ such that S̃ = S̄/Λ. If we

denote q : S̄ −→ S̃ the quotient map, then π̄ = πh ◦ q.

Lemma 3.2. dimR S̄ = n, and there is a constant θ0 ∈ R such that ωE |S̄ = 0

and Im e
√
−1θ0ΩE |S̄ = 0. Moreover, S is a special Lagrangian submanifold of

phase θ0 in (X,ω0,Ω0), i.e. dimR S = n,

ω0|S ≡ 0, and Im e
√
−1θ0Ω0|S = 0.

Proof. If ωE |S̄ 6= 0 and thus ω0|S 6= 0, then there are two vectors v1, v2 ∈
S̄ such that ωE(v1, v2) > 0. By perturbing v1 and v2 a little bit if necessary,

we conclude that Σ̃ = q({t1v1 + t2v2|ti ∈ R}) is a closed 2-torus in S̃, i.e. a

closed 2-parameter subgroup. Thus Σ = πh(Σ̃) is a closed oriented surface in
S, which satisfies∫

Σ
ω0 ≥

1

λ(n)

∫
Σ̃
π∗hω0 ≥

ωE(v1, v2)

λ(n)‖v1 ∧ v2‖hE
VE > 0,

where VE denotes the Euclidean area of the intersection of {t1v1 + t2v2|
ti ∈ R} with the fundamental domain of the quotient map q. From the smooth
convergence of (Mk, ω̃k, g̃k),

lim
k−→∞

i−2
gk

(pk)

∫
Fr,k(Σ)

ωk = lim
k−→∞

∫
Fr,k(Σ)

ω̃k = lim
k−→∞

∫
Σ
F ∗r,kω̃k =

∫
Σ
ω0,

for r � 1 such that Σ ⊂ Bg0(p0, r). Thus

0 <
1

2
i2gk(pk)

∫
Σ
ω0 ≤

∫
Fr,k(Σ)

ωk ≤ 2i2gk(pk)

∫
Σ
ω0 ≤ 2k−2

∫
Σ
ω0 < 1,

for k � 1. Since [Fr,k(Σ)] ∈ H2(Mk,Z) and [ωk] ∈ H2(Mk,Z), we obtain∫
Fr,k(Σ)

ωk ∈ Z,

which is a contradiction. Hence ωE |S̄ ≡ 0 and ω0|S ≡ 0, which implies that S
is a Lagrangian submanifold (X,ω0) by combining Lemma 3.1.
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Since S̄ is a Lagrangian linear subspace of (Cn, ωE), there is a θ0 ∈ R
such that Im e

√
−1θ0ΩE |S̄ = 0. This implies that S̄ is a special Lagrangian

linear subspace of phase θ0 in (Cn, ωE ,ΩE). Thus S is a special Lagrangian
submanifold of phase θ0 in (X,ω0,Ω0), i.e.

ω0|S = 0, Im e
√
−1θ0Ω0|S = 0.

Lemma 3.3. For k � 1, [F ∗r,kω̃k|S ] = 0 in H2(S,R).

Proof. By the smooth convergence of ω̃k and Lemma 3.2,

lim
k−→∞

∫
Fr,k(A)

ω̃k =

∫
A
ω0 = 0,

for any cycle A ∈ H2(S,Z). For k � 1, we have∣∣∣∣∫
Fr,k(A)

ωk

∣∣∣∣ = i2gk(pk)

∣∣∣∣∫
Fr,k(A)

ω̃k

∣∣∣∣ < 1

2k2
< 1.

Since [Fr,k(A)] ∈ H2(Mk,Z) and [ωk] ∈ H2(Mk,Z), we obtain
∫
Fr,k(A) ωk ∈ Z.

This implies that |
∫
Fr,k(A) ωk| = 0, and we obtain the conclusion∫

A
F ∗r,kω̃k = 0.

Let X̃ be the total space of the pull-back π∗hν(S) of the normal bundle.

Note that we can identify the zero section of π∗hν(S) with S̃, and the covering

πh extends to a finite covering π : X̃ −→ X of X, i.e. S̃ = π−1(S) ⊂ X̃,

and π|S̃ = πh. The fundamental group π1(S̃) ∼= π1(X̃) is isomorphic to the

lattice Λ, π1(X̃) is a normal subgroup of π1(X) = π1(S), and the covering

group Γ ∼= π1(S)/π1(S̃) = π1(X)/π1(X̃). Note that π1(X̃) (resp. π1(X))

acts on Cn preserving gE , ωE and ΩE , S̄ is invariant, X̃ = Cn/π1(X̃) (resp.

X = Cn/π1(X)), and S̃ = S̄/π1(S̃) = S̄/Λ (resp. S = S̄/π1(S)).

Proposition 3.4. Let S̄⊥ be the orthogonal complement of S̄ in Cn, i.e.
Cn = S̄ ⊕ S̄⊥, and gE(v, w) = 0, for any v ∈ S̄ and w ∈ S̄⊥. Then

i) (X̃, π∗g0) is isometric to (Tn × S̄⊥, h + hE), where Tn = S̄/Λ = S̃,
hE = gE |S̄⊥, and h is the standard flat metric on Tn induced by gE |S̄.

ii) The action of Γ on X̃ is a product action, i.e. there are Γ-actions on
Tn and S̄⊥ such that γ · (x, y) = (γ · x, γ · y) for any γ ∈ Γ, x ∈ Tn and
y ∈ S̄⊥. Furthermore, Tn × {0} is Γ-invariant, and S = π(Tn × {0}) =
(Tn × {0})/Γ.

iii)
π∗ω0|Tn×{y} ≡ 0, and π∗Im e

√
−1θ0Ω0|Tn×{y} ≡ 0,

for any y ∈ S̄⊥, and a constant θ0 ∈ R.
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Proof. We choose coordinates x1, · · · , xn on S̄ and y1, · · · , yn on S̄⊥ such
that

gE =
∑

(dx2
j + dy2

j ), ωE =
∑

dxj ∧ dyj , e
√
−1θ0ΩE =

n∧
j=1

(dxj +
√
−1dyj).

If G is a subgroup of the fundamental group π1(X) = π1(S), then G acts on
Cn preserving gE , ωE and ΩE , and S̄ is a invariant subspace. For any γ ∈ G, we
have γ ·(v+w) = Gγ(v+w)+bγ , where Gγ ∈ U(Cn), bγ ∈ S̄, v ∈ S̄ and w ∈ S̄⊥.
Since S̄ is invariant, we then obtain Gγ(v + w) = Aγv + Bγw + Cγw where

Aγ ∈ SO(S̄), Bγ ∈ SO(S̄⊥), and Cγ ∈ Hom(S̄⊥, S̄). Moreover, Gγ ∈ SO(R2n)
implies Cγ = 0. Since ωE(Gγ(v +w), Gγ(v +w)) = ωE(v +w, v +w), we have

Bγ = A−1,T
γ = Aγ , and γ · (v +w) = Aγ(v +w) + bγ . Thus π1(X̃) ∼= Λ acts on

Cn given by γ · (v +w) = v +w+ bγ , bγ ∈ Λ, for any v ∈ S̄ and w ∈ S̄⊥. This

implies that X̃ = Cn/π1(X̃) ∼= S̄/Λ× S̄⊥ = S̃ × S̄⊥, and π∗g0 = h+ hE where

hE = gE |S̄⊥ , and h is the standard flat metric on S̃ induced by gE |S̄ .

The π1(X)-action on Cn descents to a Γ-action on X̃, which is a product

action since the π1(X)-action is. Moreover, S̃×{0} is a invariant set as S̄×{0}
is invariant under the π1(X)-action. If q1 : Cn −→ Cn/Λ = X̃ is the quotient
map then π̄ = π ◦ q1, gE = q∗1π

∗g0, ωE = q∗1π
∗ω0, and ΩE = q∗1π

∗Ω0. Since

ωE |S̄×{y} = 0 and e
√
−1θ0ΩE |S̄×{y} = 0 for y ∈ S̄⊥, we obtain

π∗ω0|Tn×{y} ≡ 0, and π∗Im e
√
−1θ0Ω0|Tn×{y} ≡ 0,

for a constant θ0 ∈ R.

Remark 3.5. The coordinates x1, · · · , xn on S̄ in the proof above induce
parallel 1-forms dx1, · · · , dxn on (S̃, h) which are pointwise linear indepen-
dent, i.e. dx1, · · · , dxn is a global parallel frame field. Under the coordinates
y1, · · · , yn on S̄⊥, we have these formulas

π∗g0 =
∑

(dx2
j+dy

2
j ), π

∗ω0 =
∑

dxj∧dyj , e
√
−1θ0π∗Ω0 =

n∧
j=1

(dxj+
√
−1dyj).

Remark 3.6. The natural projection f0 : X̃ −→ S̄⊥ is equivariant under
the Γ actions on X̃ and S̄⊥. For any y ∈ S̄⊥, f−1

0 (y) = S̃ × {y} and f0 is a

special Lagrangian fibration on (X̃, π∗ω0, e
√
−1θ0π∗Ω0), i.e. dimR f

−1
0 (y) = n,

π∗ω0|f−1
0 (y) ≡ 0, e

√
−1θ0π∗Ω0|f−1

0 (y) ≡ 0.

4. Local special Lagrangian fibrations. In this section, we study the
deformation of special Lagrangian fibrations under the convergence of Calabi–
Yau metrics. Let (Y, ω, g, J,Ω) be a complete flat Calabi–Yau n-manifold.
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Condition 4.1. Assume that

i) Y = Tn × Rn, g = h + hE, and the natural projection f : Y −→ Rn is
a special Lagrangian fibration of (Y, ω,Ω), where Tn = Rn/Λ is a torus,
Λ is a lattice in Rn, hE is the standard Euclidean metric on Rn, and h
is the standard flat metric induced by hE.

ii) There are parallel 1-forms dx1, · · · , dxn on (Tn, h), which are pointwise
linear independent, and coordinates y1, · · · , yn on Rn such that

g = h+ hE =
∑

(dx2
j + dy2

j ), ω =
∑

dxj ∧ dyj , Ω =

n∧
j=1

(dxj +
√
−1dyj).

iii) There is a family of Calabi–Yau structures (ωk, gk, Jk,Ωk) converging to
(ω, g, J,Ω) in the C∞-sense on Y2r = Tn×BhE (0, 2r) for a r � 1, where
BhE (0, 2r) = {y ∈ Rn|‖y‖hE < 2r}. Moreover, ωk ∈ [ω] ∈ H2(Y2r,R).

vi) There is a finite group Γ acting on Y2r preserving ωk, gk,Ωk, ω, g,Ω,
and Tn × {0} is a invariant set. The Γ-action is a product action on
Tn ×BhE (0, 2r). The natural projection f : Y −→ Rn is Γ-equivariant.

The goal of this section is to construct equivariant special Lagrangian fi-
brations on (Yr, ωk,Ωk) for k � 1.

Denote L = Tn × {0}, which is a special Lagrangian submanifold of
(Y, ω,Ω), i.e. ω|L = 0 and Im Ω|L = 0. Note that we can identify Y with
the total space of the normal bundle ν(L) by the exponential map from ν(L)
to Y , expL,g : (x,

∑
j yj

∂
∂yj

) 7→ (x, y) where x ∈ L and y = (y1, · · · , yn). There

is a canonical bundle isomorphism from ν(L) to the cotangent bundle T ∗L
given by v 7→ ι(v)ω where v ∈ νx(L). Thus we can identify Y with the total
space of T ∗L by the map

(1) (x, y) 7→
(
x, ι
(∑

j

yj
∂

∂yj

)
ω
)

=
(
x,
∑
j

yjdxj
)
,

where x ∈ L and y = (y1, · · · , yn) ∈ Rn. We do not distinguish Y from T ∗L in
this section for convenience. For a 1-form σ on L, and a y ∈ Rn, which can be
regarded as a 1-form from above,

L(y, σ) = {(x, y + σ(x))|x ∈ L}

denotes the graph of y + σ, i.e. y =
∑
yjdxj , σ =

∑
σjdxj , and

L(y, σ) = {(x, y1 + σ1(x), · · · , yn + σn(x))|x ∈ L}.

There are two constants ak > 0 and θk ∈ R, for any k, such that∫
L

Ωk = ake
−
√
−1θk

∫
L

Ω0 = ake
−
√
−1θk

∫
L

Re Ω0,
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lim
k−→∞

ak = 1 and lim
k−→∞

θk = 0 by the smooth convergence of Ωk. There are

real 1-forms αk and complex value (n− 1)-forms βk such that

ωk = ω0 − dαk, Ωk = ake
−
√
−1θk(Ω0 + dβk)

by ωk ∈ [ω] ∈ H2(Y2r,R). By the smooth convergence of ωk and Ωk,

(2) lim
k−→∞

‖dαk‖C2(Y2r,g) = lim
k−→∞

‖dβk‖C2(Y2r,g) = 0.

Define a diffeomorphism Π : L −→ L(y, σ) by x 7→ (x, y + σ(x)) for a
y ∈ Rn and a 1-form σ on L. If

(3) Fk(y, σ) = (−Π∗ωk|L(y,σ), ∗ha−1
k Π∗Im e

√
−1θkΩk|L(y,σ)),

where ∗h is the Hodge star operator on (L, h), then L(y, σ) is a special La-
grangian submanifold of (Y, ωk,Ωk) of phase θk if and only if

Fk(y, σ) = 0.

A straightforward calculation (cf. [33]) gives

(4) Fk(y, σ) = (dσ + Π∗dαk|L(y,σ), ∗hd ∗h σ + ∗hΠ∗d Imβk|L(y,σ)).

We denote by Ωj(L) the space of j-forms on L, and define two Banach
spaces B1 = C1,α(dΩ0(L) ⊕ d∗hΩ2(L)) and B2 = C0,α(dΩ1(L) ⊕ d∗hΩ1(L)).
Then Fk defines a smooth map Fk : U(r) −→ B2 for any k, where U(r) =
{‖y‖hE + ‖σ‖C1,α(L,h) < 2r|(y, σ) ∈ Rn ×B1}.

Lemma 4.2. For any y ∈ BhE (0, 2r),

‖Fk(y, 0)‖C0,α(L,h) ≤ C‖(dαk, dβk)‖C1,α(Y2r,g),

for a constant C independent of k.

Proof. Since

Fk(y, 0) = (Π∗dαk|L(y,0), ∗hΠ∗d Imβk|L(y,0)),

we obtain the conclusion by straightforward calculations.

The differentials of Fk(y, σ) are
(5)
DσFk(y, σ)σ̇ = (dσ̇, ∗hd ∗h σ̇) + (Dσ(Π∗dαk|L(y,σ))σ̇, ∗hDσ(Π∗d Imβk|L(y,σ))σ̇),

(6) DyFk(y, σ)ẏ = (Dy(Π
∗dαk|L(y,σ))ẏ, ∗hDy(Π

∗d Imβk|L(y,σ))ẏ)

and DFk(y, σ)(ẏ + σ̇) = DσFk(y, σ)σ̇ +DyFk(y, σ)ẏ.

Under the frame field dx1, · · · , dxn and coordinates y1, · · · , yn,

dαk =
∑
ij

(αk,ijdxi ∧ dxj + αk,i(n+j)dxi ∧ dyj + αk,(n+i)(n+j)dyi ∧ dyj).
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The differential is

D(Π∗dαk|L(y,σ))(ẏ + σ̇) =
∑
ijl

(
∂αk,ij
∂yl

(ẏl + σ̇l)dxi ∧ dxj + αk,i(n+j)dxi ∧ dσ̇j

+
∂αk,i(n+j)

∂yl
(ẏl + σ̇l)dxi ∧ dσj + αk,(n+i)(n+j)dσi ∧ dσ̇j

+
∂αk,(n+i)(n+j)

∂yl
(ẏl + σ̇l)dσi ∧ dσj

)
.

We obtain

‖Dσ(dαk|L)σ̇‖C0,α(L,h) ≤ C‖dαk‖C1,α(Y2r,g)‖σ̇‖C1,α(L,h),

‖Dσ(Π∗dαk|L(y,σ))σ̇‖C0,α(L,h) ≤ C‖dαk‖C1,α(Y2r,g)

·
(∑
l=0,1,2

‖σ‖lC1,α(L,h)

)
‖σ̇‖C1,α(L,h),(7)

‖Dy(Π
∗dαk|L(y,σ))ẏ‖C0,α(L,h) ≤ C‖dαk‖C1,α(Y2r,g)

·
(∑
l=0,1,2

‖σ‖lC1,α(L,h)

)
‖ẏ‖hE ,

for a constant C independent of k. The same argument gives

‖Dσ(d Imβk|L)σ̇‖C0,α(L,h) ≤ C‖dβk‖C1,α(Y2r,g)‖σ̇‖C1,α(L,h),

‖Dσ(Π∗d Imβk|L(y,σ))σ̇‖C0,α(L,h) ≤ C‖dβk‖C1,α(Y2r,g)

·
( ∑
l=0,1,··· ,n

‖σ‖lC1,α(L,h)

)
‖σ̇‖C1,α(L,h),(8)

‖Dy(Π
∗d Imβk|L(y,σ))ẏ‖C0,α(L,h) ≤ C‖dβk‖C1,α(Y2r,g)

·
( ∑
l=0,1,··· ,n

‖σ‖lC1,α(L,h)

)
‖ẏ‖hE .

Lemma 4.3. The operator DσFk(0, 0) is invertible for k � 1, and

‖DσFk(0, 0)−1‖ ≤ C,

for a constant C > 0 independent of k.

Proof. Note that

DσFk(0, 0)σ̇ = (dσ̇, ∗hd ∗h σ̇) + (Dσ(dαk|L)σ̇, ∗hDσ(d Imβk|L)σ̇) = (D + Vk)σ̇,

where D = d− ∗hd∗h is the restriction of the Hodge Dirac operator d+ d∗h to
the space of 1-forms, and, thus, is an elliptic operator of order 1. The Kernel
KerD of D is the space of harmonic 1-forms, and therefore is orthogonal to B1

with respect to the L2-norm by the Hodge decomposition. Hence D : B1 → B2
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is injective, and by the standard elliptic estimate (cf. Proposition 1.5.2 in [28]
and [24]), we have

‖ξ‖C1,α(L,h) ≤ CS‖Dξ‖C0,α(L,h),

for any ξ ∈ B1, and a constant CS independent of k. From the definition of
B2, D is also surjective, which implies that D is an invertible operator from
B1 to B2. Moreover,

‖D−1‖ ≤ CS .

By (7) and (8),

‖Vk‖ ≤ C‖(dαk, dβk)‖C1,α(Y2r,g) <
1

2CS
,

for k � 1, and, thus,

‖D−1Vk‖ <
1

2
.

By the standard operator’s theory (cf. [40]), DσFk(0, 0) = D+Vk is invertible,
and the inverse operator is defined by

DσFk(0, 0)−1 =
( ∞∑
j=0

(−1)j(D−1Vk)
j
)
D−1.

We obtain

‖DσFk(0, 0)−1‖ ≤
( ∞∑
j=0

2−j
)
‖D−1‖ ≤ C,

for a constant C > 0 independent of k.

Lemma 4.4. For any δ0 � 1, there is a constant k0 � 1 such that, if
‖y‖hE ≤ 3r

2 and ‖σ‖C1,α(L,h) ≤ δ0, and k > k0, then

‖DσFk(y, σ)−DσFk(0, 0)‖ ≤ 1

2C
.

Furthermore, also DσFk(y, σ) is invertible, and

‖DσFk(y, σ)−1‖ ≤ 2C.

Proof. By (5),

(DσFk(y, σ)−DσFk(0, 0))σ̇ =
(
(Dσ(Π∗dαk|L(y,σ))−Dσ(dαk|L))σ̇,

∗h (Dσ(Π∗d Imβk|L(y,σ))−Dσ(d Imβk|L))σ̇
)
.
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We can take a k0 � 1 such that, for k > k0,

‖DσFk(y, σ)−DσFk(0, 0)‖ ≤ 2C‖(dαk, dβk)‖C1,α(Y2r,g)

( ∑
l=0,1,··· ,n

‖σ‖lC1,α(L,h)

)
≤ 2C‖(dαk, dβk)‖C1,α(Y2r,g)nδ0

≤ 1

4C
,

by (2), (7) and (8). We obtain the first of the required estimates.
Note that DσFk(y, σ) = DσFk(0, 0)+(DσFk(y, σ)−DσFk(0, 0)), DσFk(0, 0)

is invertible, and ‖DσFk(0, 0)−1‖ ≤ C. By the same arguments as in the proof
of Lemma 4.3, and

‖DσFk(0, 0)−1(DσFk(y, σ)−DσFk(0, 0))‖ ≤ 1

2
,

also DσFk(y, σ) is invertible, and

‖DσFk(y, σ)−1‖ ≤
( ∞∑
j=0

2−j
)
‖DσFk(0, 0)−1‖ ≤ 2C.

Lemma 4.5. For a fixed δ < δ0, there is a k1 > k0 such that, for any
y ∈ BhE (0, 3r

2 ) and k > k1, there is a unique σk(y) ∈ B1, such that

Fk(y, σk(y)) = 0, ‖σk(y)‖C1,α(L,h) ≤ δ,

which implies that L(y, σk(y)) is a special Lagrangian submanifold of
(Y2r, ωk,Ωk). Furthermore,

‖Dσk(y)‖ ≤ 2nδCC‖(dαk, dβk)‖C1,α(Y2r,g),

for a constant C independent of k.

Proof. Fix a δ < δ0, there is a k1 > k0 such that, for k > k1, and any
y ∈ BhE (0, 2r),

‖Fk(y, 0)‖C0,α(L,h) ≤
δ

4C
,

by Lemma 4.2. By Theorem 2.6, Lemma 4.3 and Lemma 4.4, for any y ∈
BhE (0, 3r

2 ) and k > k1, there is a unique σk(y) ∈ B1 such that

(9) Fk(y, σk(y)) = 0, ‖σk(y)‖C1,α(L,h) ≤ δ,

which implies that L(y, σk(y)) is a special Lagrangian submanifold of
(Y2r, ωk,Ωk).
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By (6), (7) and (8),

‖DyFk(y, σk)‖ ≤ C‖(dαk, dβk)‖C1,α(Y2r,g)

( ∑
l=0,1,··· ,n

‖σk‖lC1,α(L,h)

)
≤ C‖(dαk, dβk)‖C1,α(Y2r,g)nδ,

for a constant C independent of k. By Theorem 2.6,

Dσk(y)ẏ = −DσFk(y, σk)
−1DyFk(y, σk)ẏ.

We obtain the conclusion from Lemma 4.4.

Proposition 4.6. For k � 1, there is an open set Wk such that Y2r ⊃
Wk ⊃ Yr and (Wk, ωk,Ωk) admits an equivariant special Lagrangian fibration
fk : Wk −→ Bk of phase θk over Bk ⊂ Rn, i.e. there is a Γ-action on Bk, fk
is a Γ-equivariant map, and fk is a special Lagrangian fibration of phase θk,
i.e.

ωk|f−1
k (b) ≡ 0, Im e

√
−1θkΩk|f−1

k (b) ≡ 0,

for any b ∈ Bk.

Proof. By Lemma 4.5, there is a unique C1-map

σk : BhE
(
0,

3r

2

)
−→ C1,α(dΩ0(Tn)⊕ d∗hΩ2(Tn)), by y 7→ σk(y),

which satisfies

Fk(y, σk(y)) = 0, ‖σk(y)‖C1,α(L,h) ≤ δ � 1,

and ‖Dσk(y)‖ ≤ 2nδCC‖(dαk, dβk)‖C1,α(Y2r,g).

This implies ∣∣∂σk,j(y)

∂yi

∣∣ ≤ 2nδCC‖(dαk, dβk)‖C1,α(Y2r,g) � 1,

for k � k1 > 1.
Define a map Ψk : Y 3

2
r −→ Y2r by

Ψk : (x, y) 7→ (x, y1 + σk,1(y), · · · , yn + σk,n(y)) = (x, y + σk(y)).

Note that the frame field dx1, · · · , dxn induces local coordinates x1, · · · , xn
around any point on L, and the differential can be expressed as

dΨk : (ẋ, ẏ) 7→
(
ẋj +

∑ ∂σk,j(y)

∂xi
ẋi, ẏj +

∑ ∂σk,j(y)

∂yi
ẏi
)
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under such local coordinates. Thus dΨk is an isomorphism when k � 1, which
implies that Ψk is an immersion. Furthermore, for y1 6= y2 ∈ Rn,

Ψk(x, y2)−Ψk(x, y1) =
(
x, · · · ,

∫ 1

0
(1 +

∂σk,j((1−t)y2+ty1)
∂yj

dt)(y2,j − y1,j), · · ·
)

6= 0.

Hence Ψk is an embedding.
Note that the Γ-action on Y2r = Tn×BhE (0, 2r) preserves ωk, gk,Ωk, ω, g,Ω,

and is a product action on Tn×BhE (0, 2r), i.e. there are Γ-actions on Tn and
BhE (0, 2r) such that γ · (x, y) = (γ · x, γ · y) for any γ ∈ Γ, x ∈ Tn, and
y ∈ BhE (0, 2r). Under identification map (1),

(γ · x, γ · y) =
(
γ · x, ι

(
γ∗
∑
j

yj
∂

∂yj

)
ω
)

=
(
γ · x, γ∗ω

(∑
j

yj
∂

∂yj
, γ−1
∗ ·

))
=
(
γ · x, γ−1,∗

∑
j

yjdxj
)
.

Thus

γ · L(y, σk(y)) = {(γ · x, γ · (y1 + σk,1(y)(x), · · · , yn + σk,n(y)(x)))|x ∈ Tn}

=
{(
γ · x, γ−1,∗

∑
j

(yj + σk,j(y)(x)
)
dxj |x ∈ Tn

}
= L(γ · y, γ−1,∗σk(y)),

for any γ ∈ Γ and y ∈ BhE (0, 2r). Since the Γ-action preserves ωk and Ωk,
L(γ · y, γ−1,∗σk(y)) are special Lagrangian submanifolds. By the uniqueness of
σk(y), γ−1,∗σk(y) = σk(γ · y) ∈ C1,α(dΩ0(Tn)⊕ d∗hΩ2(Tn)). Hence

Ψk(γ · x, γ · y) =
(
γ · x, γ · y + σk(γ · y)

)
=
(
γ · x, γ−1,∗

∑
j

(yj + σk,j(y))dxj
)

=
(
γ · x, γ · (y1 + σk,1(y), · · · , yn + σk,n(y))

)
= γ ·Ψk(x, y),

i.e. Ψk is a Γ-equivariant map.
We denote by P : Y2r−→BhE (0, 2r) the natural projection, Bk=BhE (0, 3

2r)
and Wk = Ψk(Y 3

2
r). Since the Γ-action on BhE (0, 2r) preserves the metric hE

and 0, Bk = BhE (0, 3
2r) is invariant. By δ � 1 � r, Wk ⊃ Yr. Then

fk = P ◦ Ψ−1
k : Wk −→ Bk is a Γ-equivariant special Lagrangian fibration of

(Wk, ωk,Ωk) of phase θk. We obtain the conclusion.
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5. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that the conclusion is not true. Then,
for any fixed σ > 1, there is a family of closed Ricci-flat Calabi–Yau n-manifolds
{(Mk, ωk, Jk, gk,Ωk)} with [ωk] ∈ H2(Mk,Z), and pk ∈Mk such that

i) the injectivity radius and the sectional curvature fulfil the following
estimates:

igk(pk) <
1

k
, sup

Bgk (pk,1)
|Kgk | ≤ 1,

ii) [Ωk|Bgk (pk,σigk (pk))] 6= 0 in Hn(Bgk(pk, σigk(pk)),C),

iii) for any open subset W ′k ⊃ Bgk(pk, σigk(pk)), (W ′k, ωk,Ωk) would not
admit special Lagrangian fibrations.

If we denote ω̃k = i−2
gk

(pk)ωk, g̃k = i−2
gk

(pk)gk, and Ω̃k = i−ngk (pk)Ωk, then

ig̃k(pk) = 1, sup
Bg̃k (pk,k)

|Kg̃k | ≤
1

k2
,

and [Ω̃k|Bg̃k (pk,σ)] 6= 0 in Hn(Bg̃k(pk, σ),C). By the Cheeger–Gromov con-

vergence theorem (cf. Theorem 2.4), a subsequence of (Mk, ω̃k, g̃k, Jk, Ω̃k, pk)
converges to a complete flat Calabi–Yau n-manifold (X,ω0, g0, J0,Ω0, p0) in the
C∞-sense, i.e. for any r > σ, there are embeddings Fr,k : Bg0(p0, r) −→ Mk

such that Fr,k(p0) = pk, and F ∗r,kg̃k (resp. F ∗r,kω̃k and F ∗r,kΩ̃k) converges to

g0 (resp. ω0 and Ω0) in the C∞-sense. Furthermore, ig0(p0) = 1. The soul
theorem (cf. [10], [34]) implies that there is a compact flat totally geodesic
submanifold S ⊂ X, the soul, such that (X, g0) is isometric to the total space
of the normal bundle ν(S) with a metric induced by g0|S and a natural flat
connection.

By Proposition (3.4), there is a finite normal covering π : X̃ −→ X with
covering group Γ such that

i) (X̃, π∗g0) is isometric to (Tn × Rn, h + hE), where Tn = Rn/Λ, Λ is a
lattice in Rn, hE is the standard Euclidean metric on Rn, and h is the
standard flat metric on Tn induced by hE .

ii) The action of Γ on X̃ is a product action, i.e. there are Γ-actions on Tn

and Rn such that γ · (x, y) = (γ · x, γ · y) for any x ∈ Tn and y ∈ Rn.
Furthermore, Tn × {0} is Γ-invariant, and S = (Tn × {0})/Γ.

iii)
π∗ω0|Tn×{y} ≡ 0, and π∗Im e

√
−1θ0Ω0|Tn×{y} ≡ 0,

for any y ∈ Rn, and a constant θ0 ∈ R.

Note that the Γ-action on Rn preserves hE and BhE (0, ρ), which implies

that X̃ρ = Tn × BhE (0, ρ) is invariant, for any ρ > 0. Lemma (3.3) shows
[F ∗r,kω̃k|S ] = 0 in H2(S,R), for k � 1, which implies [π∗F ∗r,kω̃k|X̃ρ ] = 0
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in H2(X̃ρ,R), for any ρ > 0. By Remark (3.5), there are parallel 1-forms
dx1, · · · , dxn on (Tn, h), which are pointwise linear independent, and coordi-
nates y1, · · · , yn on Rn such that

π∗g0 =
∑

(dx2
j+dy

2
j ), π

∗ω0 =
∑

dxj∧dyj , e
√
−1θ0π∗Ω0 =

n∧
j=1

(dxj+
√
−1dyj).

Hence Condition 4.1 is satisfied.
Let r > ρ � σ be such that Bg0(p0, σ) ⊂ π(X̃ρ) ⊂ π(X̃2ρ) ⊂ Bg0(p0, r).

By Proposition (4.6), for k � 1, there is an open set Wk ⊃ X̃ρ such that
(Wk, π

∗F ∗r,kωk, π
∗F ∗r,kΩk) admits an equivariant special Lagrangian fibration

fk : Wk −→ Bk of phase θk, where Bk ⊂ Rn, i.e. there is a Γ-action on Bk, fk
is a Γ-equivariant map, and

π∗F ∗r,kωk|f−1
k (b) ≡ 0, π∗F ∗r,kIm e

√
−1θkΩk|f−1

k (b) ≡ 0,

for any b ∈ Bk. Hence fk induces a special Lagrangian fibration f̄k : π(Wk) −→
Bk/Γ, which implies that (Fr,k ◦π(Wk), ωk,Ωk) admits a special Lagrangian fi-
bration, and Fr,k ◦ π(Wk) ⊃ Bgk(xk, σigk(xk)). It is a contradiction. We obtain
the conclusion.

6. Estimates for injectivity radius. In this section, we prove Theorem
1.5 (Corollary 6.1) and Theorem 1.6 (Theorem 6.3). The following estimate
for injectivity radius is a direct consequence of Theorem 2.5.

Corollary 6.1. Let (M, g) be a closed Riemannian manifold, Θ be a cal-
ibration n-form, and p ∈M . Assume that the sectional curvature Kg satisfies

sup
Bg(p,2π)

Kg ≤ 1,

and there is a submanifold L calibrated by Θ such that dimR L = n, p ∈ L, and∫
L

Θ <
π

2n
$n−1,

where $n−1 is the volume of Sn−1 with the standard metric of constant curva-
ture 1. Then the injectivity radius ig(p) of (M, g) at p satisfies

ig(p)
n ≤ nπn−1

2n−1$n−1

∫
L

Θ.

Proof of Corollary 6.1 and Theorem 1.5. By Theorem 2.5, we have

Volh1(Bh1(r)) ≤ Volg(Bg(p, r) ∩ L) ≤ Volg(L) =

∫
L

Θ,

for any r ≤ min{ig(p), π2 }, where h1 denotes the standard metric on Sn with
constant curvature 1, and Bh1(r) denotes a metric r-ball in Sn. Since h1 =
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dr2 + sin2 rhSn−1 where hSn−1 is the standard metric on Sn−1 with constant
curvature 1, we obtain sin r ≥ 2

π r, and

2n−1

nπn−1
rn$n−1 ≤

∫ r

0
sinn−1 rdr$n−1 = Volh1(Bh1(r)) ≤

∫
L

Θ.

If ig(p) ≥ π
2 , by letting r = π

2 , we obtain

π

2n
$n−1 ≤

∫
L

Θ <
π

2n
$n−1,

which is a contradiction. Thus ig(p) <
π
2 . By letting r = ig(p), we obtain

ig(p)
n ≤ nπn−1

2n−1$n−1

∫
L

Θ.

We obtain Theorem 1.5 by applying the above arguments to special La-
grangian submanifolds in Ricci-flat Calabi–Yau manifolds.

An obvious application of Corollary 6.1 is estimating injectivity radii by
volumes of holomorphic submanifolds, which is interesting by itself.

Corollary 6.2. Let (M,ω, J, g) be a closed Kähler m-manifold, and p ∈
M . Assume that the sectional curvature Kg satisfies

sup
M

Kg ≤ 1,

and there is a smooth holomorphic n-submanifold N such that p ∈ N , and∫
N
ωn <

(n− 1)!π

2
$n−1.

Then the injectivity radius ig(p) of (M, g) at p satisfies

ig(p)
n ≤ πn−1

(n− 1)!2n−1$n−1

∫
N
ωn.

By combining this corollary and the result in [10], there are F -structures
of positive rank on the regions of Kähler manifolds with bounded curvature
and fibred by holomorphic submanifolds with small volumes.

Finally, we estimate the volume of metric balls when they are fibred by
calibrated submanifolds with small volume in the absence of bounded curvature
of the ambient manifolds.

Theorem 6.3. For any n,m ∈ N and any ε > 0, there is a constant
δ = δ(n,m, ε) > 0 for which the following statement holds true: Assume that
(M, g,Θ) is a closed Ricci-flat Einstein m-manifold with a calibration n-form
Θ, p ∈M , and there is a homology class A ∈ Hn(M,Z) such that for any x ∈
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Bg(p, 1), there is a n-submanifold Lx calibrated by Θ passing x and presenting
A, i.e. x ∈ Lx and [Lx] = A. If ∫

A
Θ < δ,

then
Volg(Bg(p, 1)) ≤ ε.

Proof of Theorem 6.3 and Theorem 1.6. Assume that the conclu-
sion is not true. Then there is a family of closed Ricci-flat Einstein m-manifolds
{(Mk, gk,Θk)} with calibration n-forms Θk, pk ∈Mk, and there are homology
class Ak ∈ Hn(Mk,Z) such that

i) for any x ∈ Bgk(pk, 1), there is a n-submanifold Lk,x calibrated by Θk

passing x and presenting Ak, i.e. x ∈ Lk,x and [Lk,x] = Ak,
ii) ∫

Ak

Θk <
1

k
.

However,
Volgk(Bgk(pk, 1)) ≥ C,

for a constant C > 0 independent of k.
By the Gromov pre-compactness theorem (Theorem 2.2), by passing to a

subsequence, {(Mk, gk, pk)} converges to a complete path metric space (Y, dY , p)
in the pointed Gromov–Hausdorff sense. By Theorem 2.3, the Hausdorff di-
mension of (Y, dY , p) is m, and there is a closed subset SY ⊂ Y of Hausdorff
dimension smaller than m − 1, i.e. dimH SY < m − 1, such that Y \SY is
a smooth manifold, and dY is induced by a Ricci-flat Einstein metric g∞ on
Y \SY . Furthermore, for any compact subset D ⊂ Y \SY , there are embeddings
Fk,D : D −→Mk such that F ∗k,Dgk converges to g∞ in the C∞-sense.

We take D so large that D ∩ BdY (p, 1
8) is not empty. For a y ∈ intD ∩

BdY (p, 1
4), there is a r > 0 such that Bg∞(y, 2r) ⊂ intD ∩ BdY (p, 1

4), and

Bgk(Fk,D(y), r) ⊂ Fk,D(D) ∩ Bgk(pk,
1
2) when k � 1. By the smooth conver-

gence of F ∗k,Dgk, the sectional curvatures Kgk satisfy

sup
Fk,D(D)

|Kgk | ≤ CD,

for a constant CD depending on D, but independent of k. Let Lk be an n-
submanifold calibrated by Θk passing Fk,D(y) and presentingAk, i.e. Fk,D(y) ∈
Lk and [Lk] = Ak. By the Bishop–Gromov comparison theorem, for any ρ ≤ r,

Volgk(Bgk(Fk,D(y), ρ))

ρm
≥ Volgk(Bgk(Fk,D(y), 1)) ≥ Volgk(Bgk(pk,

1

2
))

≥ 1

2m
Volgk(Bgk(pk, 1)) ≥ C

2m
.
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Then there is a uniform lower bound ι > 0 for injectivity radii igk(Fk,D(y)) at
Fk,D(y) (cf. [34]), i.e. igk(Fk,D(y)) ≥ ι > 0 for k � 1. By Theorem 2.5, we
have

Volh1(Bh1(ρ)) ≤ Volgk(Bgk(Fk,D(y), ρ) ∩ Lk) ≤
∫
Lk

Θk =

∫
Ak

Θk ≤
1

k
,

where ρ = min{ι, r, π√
CD
}, h1 denotes the standard metric on Sn with con-

stant curvature CD , and Bh1(ρ) denotes a metric ρ-ball in Sn. We obtain a
contradiction when k � 1, and, thus, we obtain the conclusion.

We obtain Theorem 1.6 by applying the above arguments to special La-
grangian submanifolds in Ricci-flat Calabi–Yau manifolds.

Remark 6.4. Let {(Mk, gk,Θk)} be a family of closed Ricci-flat Einstein
m-manifolds with calibration n-forms Θk, and {pk} be a sequence of points
such that there are open subsets Wk ⊃ Bgk(pk, 1) in Mk admitting calibrated

fibrations fk : Wk −→ Bk corresponding to Θk, i.e. for any bk ∈ Bk, f−1
k (bk) is

an n-submanifold calibrated by Θk. If

lim
k−→∞

∫
f−1
k (bk)

Θk = 0,

where bk ∈ Bk, Theorem 6.3 implies that

lim
k−→∞

Volgk(Bgk(pk, 1)) = 0,

and, by passing to a subsequence, {(Mk, gk)} converges to a path metric space
of a lower Hausdorff dimension in the pointed Gromov–Hausdorff sense.

Remark 6.5. Theorem 6.3 applies to G2-manifolds and Spin(7)-manifolds
since they are Ricci-flat Einstein manifolds (cf. [28]).
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