FAQ

Carathéodory completeness on the plane

Data publikacji: 17.12.2019

Universitatis Iagellonicae Acta Mathematica, 2019, Tom 56, s. 15 - 21

https://doi.org/10.4467/20843828AM.19.002.12110

Autorzy

Armen Edigarian
Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
Wszystkie publikacje autora →

Tytuły

Carathéodory completeness on the plane

Abstrakt

M. A. Selby [8-10] and, independently, N. Sibony [11] proved that on the complex plane c-completeness is equivalent to c-finitely compactness. Their proofs are quite similar and are based on [4]. We give more refined equivalent conditions and, along the way, simplify the proofs.

2010 Mathematics Subject Classification. 30H05, 30H50.

The author was supported in part by the Polish National Science Centre (NCN) grant no. 2015/17/B/ST1/00996.

Bibliografia

1. Boivin A., Gauthier P., Holomorphic and harmonic approximation on Riemann surfaces, in the book Approximation, Complex Analysis, and Potential Theory, edited by N. Arakelian, P. M. Gauthier, and G. Sabidussi, Kluwer Academic Publishers, 2001.

2. Edigarian A., Peak points for domains in C n , Ann. Polon. Math., 114.1 (2015), 1–12.

3. Gamelin T. W., Uniform algebras, Chelsea Publishing Company, 1984.

4. Gamelin T. W., Garnett J., Distinguished homomorphisms and fiber algebras, Amer. J. Math, 92 (1970), 455–474.

5. Gogus N. G., Perkins T. L., Poletsky E. A., Non-compact versions of Edwards’ theorem, Positivity, 17 (2013), 459–473.

6. Jarnicki M., Pflug P., Invariant distances and metrics in complex analysis, De Gruyter, 2nd Extended Edition, 2013.

7. Kosiński L., Zwonek W., Proper holomorphic mappings vs. peak points and Shilov boundary, Ann. Polon. Math., 107 (2013), 97–108.

8. Selby M. A., On completeness with respect to the Carath´eodory metric, Canad. Math. Bull., 17 (1974), 261–263.

9. Selby M. A., On maximal and complete regions, Colloq. Math., 32 (1974), 119–125.

10. Selby M. A., On completeness with respect to a Carath´eodory-like metric, Colloq. Math., 39 (1978), 87–94.

11. Sibony N., Prolongement de fonctions holomorphes born´ees et metrique de Carath´eodory, Invent. Math., 29 (1975), 205–230

12. Stout E.L., The theory of uniform algebras, Bogden and Quigley Publishers, 1971.

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2019, Tom 56, s. 15 - 21

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

Carathéodory completeness on the plane

Polski:

Carathéodory completeness on the plane

Autorzy

Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland

Publikacja: 17.12.2019

Otrzymano: 15.02.2019

Status artykułu: Otwarte __T_UNLOCK

Licencja: CC BY-NC-ND  ikona licencji

Udział procentowy autorów:

Armen Edigarian (Autor) - 100%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 990

Liczba pobrań: 993

<p> Carathéodory completeness on the plane</p>