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CARATHÉODORY COMPLETENESS ON THE PLANE

by Armen Edigarian

Dedicated to the memory of Professor Józef Siciak

Abstract. M. A. Selby [8–10] and, independently, N. Sibony [11] proved
that on the complex plane c-completeness is equivalent to c-finitely com-
pactness. Their proofs are quite similar and are based on [4]. We give more
refined equivalent conditions and, along the way, simplify the proofs.

1. Introduction. Let D ⊂ Cn be a domain and let ζ ∈ ∂D be its bound-
ary point. We denote by A(D ∪ {ζ}) the set of all bounded holomorphic
functions on D which extend continuously to D ∪ {ζ}. Following [7], we say
that ζ is a weak peak point for D if there exists a function f ∈ A(D∪{ζ}) such
that |f | < 1 on D and f(ζ) = 1.

Theorem 1. Let D ⊂ C be a domain and let ζ ∈ ∂D be its boundary point.
Then the following conditions are equivalent:

(1) ζ is a weak peak point for D;
(2) there exists no finite Borel measure µ on D such that

|f(ζ)| ≤
∫
|f |dµ for any f ∈ A(D ∪ {ζ});

(3) we have
∞∑
n=1

2nγ(An(ζ, a) \D) = +∞,
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where An(ζ) = {z ∈ C : 1
2n+1 ≤ |z−ζ| ≤ 1

2n } and γ is the analytic capacity
(see the definition below).

The equivalency of (1) and (3) in Theorem 1 was proved by M. A. Selby
(see [9]). Note that the implication (1) =⇒ (2) is straightforward (also
in a higher dimension). The implication (2) =⇒ (1) in any dimension is
claimed in [2]. However, the proof is based on a false version of Hahn–Banach
theorem, claimed in [5]. So, we give a new proof on the complex plane. In a
higher dimension, it is still an open problem whether (2) =⇒ (1).

Let D(ζ, r) = {z ∈ C : |z − ζ| < r} denote the disk on the complex plane
and let D = D(0, 1) denote the unit disk. We define the Poincaré function p
on D as

p(λ1, λ2) =
1

2
log

1 +m(λ1, λ2)

1−m(λ1, λ2)
, λ1, λ2 ∈ D,

where m(λ1, λ2) =
∣∣∣ λ1−λ2
1−λ1λ2

∣∣∣ is the Möbius function.

Let D ⊂ Cn, n ≥ 1, be a domain. For z1, z2 ∈ D put

cD(z1, z2) = sup{p(f(z1), f(z2)) : f ∈ O(D;D)},(1)

c∗D(z1, z2) = sup{m(f(z1), f(z2)) : f ∈ O(D;D)},(2)

where O(D;D) denotes the set of all holomorphic mappings D → D. cD is
called the Carathéodory pseudodistance for D (see e.g. [6]). In case when cD
is indeed a distance we say that D is c-hyperbolic. A c-hyperbolic domain D
is called c-complete if any cD-Cauchy sequence {zν}ν≥1 ⊂ D converges to a
point z0 ∈ D (w.r.t. Euclidean topology).

The aim of this paper is to study more carefully the completeness on the
complex plane. Along the way we simplify the proofs by M. A. Selby [8–10]
and by N. Sibony [11].

We say that a measurable set F ⊂ C is of positive density at a point
ζ ∈ C if

lim sup
r→0+

L
(
D(ζ; r) ∩ F

)
r2

> 0.

First we show the following result.

Theorem 2. Let D ⊂ C be a domain and let ζ ∈ ∂D be its boundary point.
If ζ is not a weak peak point for D then

lim
r→0+

L
(
D(ζ; r) ∩D

)
πr2

= 1.

We have the following inverse of Theorem 2.
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Theorem 3. Let D ⊂ C be a domain and let ζ ∈ ∂D be its boundary point.
Assume that

lim
r→0+

L
(
D(ζ; r) ∩D

)
πr2

= 1.

Then the following conditions are equivalent to conditions (1), (2), (3) in The-
orem 1:

(4) there exists a set A ⊂ D of positive density at ζ such that for any sequence
{zν}n≥1 ⊂ A with zν → ζ we have cD(z0, zν)→∞;

(5) there exists a set A ⊂ D of positive density at ζ such that for any sequence
{zν}ν≥1 ⊂ A such that zν → ζ there follows that {zν} is not a cD-Cauchy
sequence.

Note that the implications (1) =⇒ (4) =⇒ (5) are straightforward.
Essentially, the main result of the paper is showing that (5) =⇒ (2). In case
A = Ω in Theorem 3, the result is proved in [8] and [11].

2. Proof of Theorem 1. Recall the definition of the analytic capacity

(see e.g. Chapter VIII in [3]). Let Ĉ = C ∪ {∞} denote the Riemann sphere.
The analytic capacity of a compact set K is defined by

γ(K) = sup{|f ′(∞)| : f ∈ O(Ω), ‖f‖ ≤ 1, f(∞) = 0},

where Ω is the unbounded component of Ĉ \K and

f ′(∞) = lim
z→∞

z(f(z)− f(∞)).

For any set F ⊂ C we put

γ(F ) = sup{γ(K) : K ⊂ F compact}.

Recall also the following characterization (see Theorem VIII.4.5 in [3]).

Theorem 4 (Melnikov’s criterion). Let K ⊂ C be a compact set and let
ζ ∈ K. Then ζ is a peak point for R(K) if and only if

∞∑
n=1

2nγ(An(ζ) \K) = +∞.

Note that the implication (1) =⇒ (2) in Theorem 1 is immediate. Let us
show the implication (2) =⇒ (3).

Proof of (2) =⇒ (3) in Theorem 1. Assume that

∞∑
n=1

2nγ(An(ζ) \D) < +∞.
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Using the continuity property of the analytic capacity (see the proof of Theo-
rem 3.1 in [4]) one can show that there exists a compact set K ⊂ D∪{ζ} such
that

∞∑
n=1

2nγ(An(ζ) \K) < +∞.

By Melnikov’s criterion ζ is a not peak point for R(K). Hence, by Bishop’s
characterization of peak points (see e.g. [3]) there exists a Borel probability
measure µ on K such that µ({ζ}) = 0 and

f(ζ) =

∫
fdµ for any f ∈ R(K).

Note that A(D ∪ {ζ}) ⊂ R(K) (see Corollary 8 below). Hence,

f(ζ) =

∫
fdµ for any f ∈ A(D ∪ {ζ}).

A contradiction.

3. Proof of Theorem 2. Let L denote the Lebesgue measure in C. Recall
the following well-known result (see e.g. [1], Lemma 1.5).

Proposition 5. Let K ⊂ C be a compact set. Then the function

f(z) =

∫
K

dL(η)

z − η

is holomorphic on Ĉ \K, continuous on Ĉ and f(∞) = 0. Moreover,

(3) |f(z)| ≤
∫
K

1

|z − η|
dL(η) ≤ 2

√
πL(K).

As a corollary of Proposition 5 we get Theorem 2 (cf. Corollary VIII.4.2
in [3]).

Proof of Theorem 2. Assume that

lim sup
r→0+

L(D(ζ; r) \D)

r2
> 0.

Choose rn → 0+ and b > 0 such that L(Kn) > br2n, where Kn = D(ζ; rn) \D.
Put

gn(z) =
1

L(Kn)
· (z − ζ)

∫
Kn

dL(η)

z − η
.

From Proposition 5 there follows that gn is a continuous function on Ĉ, holo-

morphic on Ĉ \Kn, gn(∞) = 1.
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Note that for any z ∈ C such that |z − ζ| ≤ rn we have

|gn(z)| ≤
2rn
√
πL(Kn)

L(Kn)
≤ 2

√
π

b
.

From the maximum principle we see that the above inequality holds on the

whole Ĉ. Now we proceed as in the proof of Theorem VIII.4.1 in [3] and get
a weak peak function for D.

4. Proof of Theorem 3. We denote by M the set of all positive finite
Borel measures in C. For µ ∈M we define its Newton potential as

M(z) = Mµ(z) =

∫
1

|z − η|
dµ(η).

From the inequality (3) we have

(4)
1

πr2

∫
D(η,r)

|z − η| ·M(z)dL(z) ≤ 2µ(C),

and, therefore, M < ∞ a.e. on C. The following result, which essentially is a
corollary of Fubini’s theorem, shows the behaviour of the left side of (4) when
r → 0 (see e.g. [12], Lemma 26.16).

Proposition 6. Let µ ∈M. For any η ∈ C we have

lim
r→0

1

πr2

∫
D(η,r)

|z − η| ·M(z)dL(z) = µ({η}).

In particular, if µ({η}) = 0, then for any ε > 0 the set

Π(ε) = {z ∈ C : |z − η| ·M(z) > ε}
is of zero density at η, i.e.,

lim
r→0

L(Π(ε) ∩ D(η, r))

r2
= 0.

Recall the following approximation result (see e.g., Theorem 10.8 in Chap-
ter VIII in [3]).

Theorem 7. Let D ⊂ C be a domain and let ζ ∈ ∂D be its boundary
point. For any f ∈ H∞(D) there exists a sequence {fn}n≥1 ⊂ H∞(D) with
‖fn‖D ≤ 17‖f‖D such that fn → f locally uniformly on D and each fn extends
holomorphically to a neighborhood of ζ. Moreover, if f extends continuously
to ζ, then fn tends to f uniformly on D.

From this we get.

Corollary 8. Let D ⊂ C be a domain and let ζ ∈ ∂D be its boundary
point. Then for any compact set K ⊂ D ∪ {ζ} we have A(D ∪ {ζ}) ⊂ R(K).



20

The following simple observation holds true.

Proposition 9. Let D ⊂ C be a domain and let ζ ∈ ∂D. Assume that µ
is a finite Borel measure in D such that

|f(ζ)| ≤
∫
|f |dµ

for any f ∈ A(D ∪ {ζ}). Then for any η ∈ D we have

|f(η)− f(ζ)| ≤ 2‖f‖∞M(η)|η − ζ|.
In particular, for any η1, η2 ∈ D we have

(5) c∗D(η1, η2) ≤ 34
(
|ζ − η1|M(η1) + |ζ − η2|M(η2)

)
.

Proof. Fix η ∈ D. Then for any f ∈ A(D ∪ {ζ}) we have f̃(z) =
f(z)−f(η)

z−η ∈ A(D ∪ {ζ}). Then

|f̃(ζ)| ≤
∫
|f̃ |dµ.

Hence,

|f(ζ)− f(η)| ≤ |ζ − η|
∫ ∣∣∣∣f(z)− f(η)

z − η

∣∣∣∣ dµ(z) ≤ 2‖f‖∞M(η)|η − ζ|.

Inequality (5) follows from Theorem 7.

We have the following corollary, which proofs the implication (5) =⇒ (2).

Corollary 10. Let D ⊂ C be a domain and let ζ ∈ ∂D. Assume that µ
is a finite Borel measure in D such that

|f(ζ)| ≤
∫
|f |dµ

for any f ∈ A(D∪{ζ}). Then for any measurable set A ⊂ D of positive density
at ζ there exists a c-Cauchy sequence {ηn}n≥1 ⊂ A such that ηn → ζ.

Proof. If

lim inf
r→0

L(D(ζ; r) ∩D)

πr2
< 1

then by Theorem 2 ζ is a weak peak point, which contradicts the existence of
the measure µ. So,

lim
r→0

L(D(ζ; r) ∩D)

πr2
= 1.

Hence,

lim sup
r→0

L(D(ζ; r) ∩A)

r2
> 0.
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Then by Proposition 6 there exists a sequence {ηn}n≥1 ⊂ D with ηn → ζ such
that |ζ − ηn|M(ηn) ≤ 1

2n . From Theorem 9 we get the result.
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