FAQ
Logo Agencji Bezpieczeństwa Wewnętrznego (ABW), Polska

Protecting critical infrastructure with game theory, optimization techniques, and AI algorithms

Data publikacji: 15.09.2023

Terroryzm – studia, analizy, prewencja, 2023, Numer 4 (4), s. 293 - 324

https://doi.org/10.4467/27204383TER.23.029.18331

Autorzy

,
Tomasz P. Michalak
Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska
https://orcid.org/0000-0002-5288-0324 Orcid
Wszystkie publikacje autora →
,
Michał T. Godziszewski
https://orcid.org/0000-0002-3907-2242 Orcid
Wszystkie publikacje autora →
Andrzej Nagórko
Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska
https://orcid.org/0000-0001-6390-1402 Orcid
Wszystkie publikacje autora →

Tytuły

Protecting critical infrastructure with game theory, optimization techniques, and AI algorithms

Abstrakt

In light of recent geopolitical developments, Europe and Poland are acutely aware of the urgent importance of infrastructure security. Despite heightened interest and increased investments, our security resources remain severely limited, rendering continuous protection for every potential target unattainable. Consequently, the strategic allocation of security resources becomes an ongoing imperative. This paper presents a short introduction to the core principles behind advanced methods that facilitate automated decision-making in security resource allocation. These methods leverage artificial intelligence (AI), game theory, and optimization techniques, and have demonstrated their effectiveness through multiple real-life deployments in the USA. We also provide a concise overview of this exciting body of research and discuss the solutions and software developed by our team, “AI for Security” at the IDEAS NCBR research institute to protect critical infrastructure in Poland and in Europe.

Bibliografia

An B. et al., A Deployed Quantal Response-Based Patrol Planning System for the U.S. Coast Guard, “Interfaces” 2013, vol. 43, no. 5, pp. 400–420. https://doi.org/10.1287/inte.2013.0700.

Bier V.M., Azaiez M.N., Game Theoretic Risk Analysis of Security Threats, Springer 2008. https://doi.org/10.1007/978-0-387-87767-9.

Blocki J. et al., Audit games with multiple defender resources, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), vol. 29, no. 1, pp. 791–797.

Brown G. et al., A Two-Sided Optimization for Theater Ballistic Missile Defense, “Operations Research” 2005, vol. 53, no. 5, pp. 745–763. https://doi.org/10.1287/opre.1050.0231.

Fang F., Nguyen T.H., Green security games: Apply game theory to addressing green security challenges, “ACM SIGecom Exchanges” 2016, vol. 15, no. 1, pp. 78–83. https://doi.org/10.1145/2994501.2994507.

Gatti N. et al., Game Theoretical Insights in Strategic Patrolling: Model and Algorithm in Normal-Form, in: Proceedings of the 2008 conference on ECAI 2008: 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 403–407. https://doi.org/10.3233/978-1-58603-891-5-403.

Gholami S. et al., Adversary models account for imperfect crime data: Forecasting and planning against real-world poachers, in: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), pp. 823–831.

Guo Q. et al., Coalitional security games, in: Proceedings of the 2016 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), pp. 159–167.

Haskell W. et al., Robust protection of fisheries with COmPASS, in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014), vol. 28, no. 2, pp. 2978–2983.

Hunt K., Zhuang J., A review of attacker-defender games: Current state and paths forward, “European Journal of Operational Research” 2023, in press. https://doi.org/10.1016/j.ejor.2023.04.009.

Hutter F. et al., Boosting Verification by Automatic Tuning of Decision Procedures, in: Proceedings of the 19th International Conference on Computer Aided Verification (CAV 2007), pp. 27–34.

Korzhyk D. et al., Stackelberg vs. Nash in security games: An extended investigation of interchangeability, equivalence, and uniqueness, “Journal of Artificial Intelligence Research” 2011, vol. 41, no. 2, pp. 297–327.

Lye K-w., Wing J., Game Strategies in Network Security, “International Journal of Information Security” 2005, vol. 4, pp. 71–86. https://doi.org/10.1007/s10207-004-0060-x.

Nagórko A., Ciosmak P., Michalak T., Two-phase security games, in: Proceedings of the Thirty-Nine Conference on Uncertainty in Artificial Intelligence (UAI 2023), pp. 1489–1498.

Nguyen T.H. et al., Analyzing the effectiveness of adversary modeling in security games, in: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013), no. 1, pp. 718–724.

Nguyen T.H. et al., Towards a science of security games, in: Mathematical Sciences with Multidisciplinary Applications, B. Toni (ed.), Springer Cham 2016, pp. 347–381.

Paruchuri P. et al., Playing Games for Security: An Efficient Exact Algorithm for Solving Bayesian Stackelberg Games, in: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), vol. 2, pp. 895–902.

Pita J. et al., Using game theory for Los Angeles Airport security, “AI Magazine” 2009, vol. 30, no. 1, pp. 43–57. https://doi.org/10.1609/aimag.v30i1.2173.

Sandler T., Terrorism & Game Theory, “Simulation & Gaming” 2003, vol. 34, no. 3, pp. 319337. https://doi.org/10.1177/1046878103255492.

Shieh E. et al., Protect: A deployed game theoretic system to protect the ports of the United States, in: Proceedings of the 11th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2012), vol. 1, pp. 13–20.

Sinha A. et al., Stackelberg security games: Looking beyond a decade of success, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 5494–5501.

Stackelberg H. von, Marktform und Gleichgewicht, J. Springer 1934.

Tambe M., Security and game theory: algorithms, deployed systems, lessons learned, Cambridge 2011.

Tsai J. et al., Iris - a tool for strategic security allocation in transportation networks, in: Proceedings of the 8th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2009, Industry Track), pp. 37–44

Vorobeychik Y., An B., Tambe M., Adversarial Patrolling Games, in: Papers from the 2012 AAAI Spring Symposium, vol. 3, pp. 91–98.

Vorobeychik Y., Pritchard M., Plan interdiction games, in: Adaptive Autonomous Secure Cyber Systems, S. Jajodia et al. (ed.), Springer Cham 2020, pp. 159–182. https://doi.org/10.1007/978-3-030-33432-1_8.

Xu H., The Mysteries of Security Games: Equilibrium Computation Be-Comes Combinatorial Algorithm Design, in: Proceedings of the 2016 ACM Conference on Economics and Computation (ACM EC 2016), pp. 497–514.

Yang R. et al., Adaptive resource allocation for wildlife protection against illegal po- achers, in: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 453–460.

Yang R. et al., Improving Resource Allocation Strategy Against Human Adversaries in Security Games, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 458–464.

Yang R. et al., Improving resource allocation strategies against human adversaries in security games: An extended study, “Artificial Intelligence” 2013, vol. 195, pp. 440–469. https://doi.org/10.1016/j.artint.2012.11.004.

Yin Z. et al., Trusts: Scheduling randomized patrols for fare inspection in transit systems, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2012), vol. 26, no. 2, pp. 2348–2355.

Zhang Y., Malacaria P., Bayesian Stackelberg games for cyber-security decision support, “Decision Support Systems” 2021, vol. 148, art. 113599. https://doi.org/10.1016/j.dss.2021.113599.

 

Internet sources

Policyjne działania Znicz, https://policja.pl/pol/aktualnosci/210088,Policyjne-dziala-nia-ZNICZ.html [accessed: 25 VI 2023].

Romanenko V., Belarus uses migrants for intelligence on the border with Ukraine, https://www.pravda.com.ua/eng/news/2022/12/6/7379514/ [accessed: 25 VI 2023].

Informacje

Informacje: Terroryzm – studia, analizy, prewencja, 2023, Numer 4 (4), s. 293 - 324

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

Protecting critical infrastructure with game theory, optimization techniques, and AI algorithms

Angielski:
Protecting critical infrastructure with game theory, optimization techniques, and AI algorithms

Autorzy

https://orcid.org/0000-0002-5288-0324

Tomasz P. Michalak
Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska
https://orcid.org/0000-0002-5288-0324 Orcid
Wszystkie publikacje autora →

Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska

https://orcid.org/0000-0001-6390-1402

Andrzej Nagórko
Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska
https://orcid.org/0000-0001-6390-1402 Orcid
Wszystkie publikacje autora →

Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Polska

Publikacja: 15.09.2023

Status artykułu: Otwarte __T_UNLOCK

Licencja: CC-BY-NC-SA  ikona licencji

Udział procentowy autorów:

Tomasz P. Michalak (Autor) - 33.33%
Michał T. Godziszewski (Autor) - 33.33%
Andrzej Nagórko (Autor) - 33.33%

Korekty artykułu:

-

Języki publikacji:

Angielski